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Abstract

The inland navigation system is highly dependent on uncertain natural factors

such as shoaling that can render waterways unnavigable. In order to ensure waterway

navigability, maintenance dredging must be completed. We consider the problem of

selecting a budget-limited subset of maintenance dredging projects to maximize the

expected commodity tonnage that can be transported through the inland waterway

system. Our model incorporates uncertainty due to unpredictable amount of budget

required for emergency dredging. This problem is modeled as a two-stage stochastic

program and a genetic algorithm is developed as a solution approach. The model and

heuristic is implemented using data obtained for the U.S. inland waterway network.
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1 Project Description

The inland navigation system is an important part of the maritime transportation system.

Transporting products by water requires less fuel and is significantly cheaper per ton-mile

than land-or air-based transportation modes. Inland waterways are responsible for trans-

porting nearly 600M tons of freight each year [15], resulting a system-wide net savings of over

$8B each year over the transportation costs that would result from using the next-cheapest

alternative. Sustained operation of this infrastructure depends on its maintenance.

This research investigates allocation of limited budget resources to inland

dredging projects to optimize system-level performance of the navigation sys-

tem. Dredging, or excavating, is a costly maintenance operation that is necessary to ensure

waterways maintain a navigable nine-foot depth. This depth is difficult to achieve reliably

because water levels change over time; that is, a period of dry weather or localized accu-

mulation of sediment (known as shoaling) could cause this depth to fall below nine feet. As

a result, insufficient or untimely dredging in a particular channel can result in water lev-

els below the required nine-foot depth. This may cause immediate damages and/or delays

(e.g., if a ship runs aground), and it can also result in more significant system-wide costs

(see, e.g., [10]) due to draft restrictions and/or closure of portions of the inland waterway

transportation system.

In the United States, dredging operations (and the planning of these operations) fall

within the purview of the U.S. Army Corps of Engineers (USACE). We estimate1 that US-

ACE spends on the order of $100M annually on inland dredging. Motivation for our research

stems from the opportunity for reducing the risk associated negative effects described in the

previous paragraph while operating under a limited budget. Optimization enables the

identification of strategies for allocating inland dredging resources that are effi-

cient with respect to both cost and risk.

As discussed in the previous paragraph, inland dredging is a relatively small percent of

the overall USACE O&M budget. The USACE also oversees lock maintenance and coastal

dredging, both of which are also vital to sustained transportation. We do not explicitly

consider coastal dredging in this report, but it is our opinion that the models in this paper

could be adapted for coastal dredging, too. Unfortunately, the problems dynamics (e.g.,

shoaling and water levels) differ drastically between the coastal and inland settings. Because

the data requirements are somewhat extensive, we opted to focus initially on the inland side.

1Based on the 2015 dataset at [17], we estimate that around 3.5% of dredging expenditures come from
inland-specific USACE districts, which corresponds to roughly $53M of the annual $1.5B dredging budget
[16]; however, this excludes some of the districts (e.g., New Orleans, Galveston, and Detroit) that have both
inland and coastal dredging projects.
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We also excluded lock O&M activities, which are important for ensuring inland waterway

navigability, from our initial research focus for reasons we now discuss. Preventive main-

tenance is routinely performed on most locks, which results in scheduled downtime. The

objective of performing preventive maintenance is to reduce unscheduled downtime (causing

slowed barge traffic and/or increased congestion) that results when lock outages occur. Pre-

ventive maintenance is already pervasive, and furthermore, this maintenance can usually be

scheduled in a way that does not have a negative effect on transportation (see, e.g., [14]).

Whereas scheduled downtime seems to have only minor effects on transportation, unsched-

uled downtime could pose a much more serious threat. Unscheduled lock downtime rates

are currently around 2% [20], which will likely increase over time (due to aging locks) if not

addressed. Major upgrade and/or rehabilitation projects can help—and will be necessary

over time to keep the system functional—but each project of this type may cost tens to

hundreds of millions of dollars, which is comparable to the national inland dredging budget.

Furthermore, whether or not historical downtime has had a significant negative economic

effect remains the subject of ongoing research (see, e.g., [1]).

To summarize the above discussion, selecting locks for rehabilitation is a strategic problem

that involves an extended planning horizon (e.g., locks may go 30 years between rehabilitation

projects) and significant investments. By contrast, allocating resources for inland dredging

involves a shorter time scale (e.g., sites may be dredged once every three years) and smaller

investments. We initially focus on the inland dredging problem because it comprises a

relatively small portion of the budget yet has the potential for significant impacts (i.e., there

is a potential for significant risk reduction without substantial additional expenditures).

Our interactions with professionals at USACE revealed that the inland dredging problem

is, in itself, quite complex. Some distinguishing features of this problem are outlined below:

1. Budgets are allocated to USACE districts for inland dredging months in advance of

the yearly dredging season, before all of that year’s dredging requirements are known.

2. Districts do not necessarily coordinate with respect to selecting and scheduling dredg-

ing projects. That is, each district’s dredging projects are selected and scheduled

by a dredge manager at the district level using assets (i.e., dredge vessels) that are

contracted specifically to that district.

3. Some locations’ dredging requirements are predictable (e.g., dredging once every three

years is always sufficient to ensure full waterway navigability). Henceforth, we will refer

to this type of dredging as routine dredging. Other locations—particularly stretches

of open river, including the lower Ohio and Mississippi—have needs for dredging that
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emerge dynamically due to unpredictable shoaling, and can cause disruptions to navi-

gation if not remedied immediately. We will refer to this type of dredging as reactive

dredging.

4. The underlying shoaling process is not well understood, nor is there a reliable source of

data from which to draw inferences. (This is however, the subject of ongoing research

at USACE, and so there is some hope that this data can be used to a greater extent to

support decision models of of the variety examined herein.) It is known, however, that

shoaling patterns (i) differ by location and (ii) depend on if/how nearby waterways are

dredged. For instance, material dredged from one location may actually cause shoals

downstream as sediment deposited into the river re-settles.

Given the items discussed above, we have opted to focus our model on the complexities

arising from Items 1–3 (i.e., those issues for which we have a reasonable source of data),

and we have excluded Item 4. That is, we do not attempt to include a “forecasted shoaling

pattern” into our model for each waterway segment; rather, in view of Item 3, our model

incorporates information (in the form of a probability distribution) about the requirements

for reactive dredging in each district—this can be estimated more easily using available data.

Our preliminary investigation revealed that yearly reactive dredging requirements are highly

uncertain, comprising anywhere between 40 and 80 percent of inland maintenance dredging

expenditures. The uncertainty associated with reactive dredging forces dredge managers

to trade off immediate versus long term benefit. For instance, dredge managers may have

to postpone a routine dredge job in order to ensure availability of resources to complete a

reactive job that has more immediate consequences. Postponing a routine job, however, may

not cause significant impacts unless it happens several years in a row.

Given the motivation expressed above, the primary contribution of this project is a new

optimization model (and associated solution approach) that (i) allocates inland dredging

budgets to USACE districts and (ii) selects projects for routine dredging—based upon un-

certain requirements for reactive dredging. In selecting dredging projects, we seek to max-

imize network-wide throughput of a set of origin-destination commodity flows. Thus, by

considering the impact of dredging projects on network-wide flows, our model incorporates

dependence among projects. We now relate our work to the literature.

Within recent years, several researchers have considered strategic allocation of resources

for maintenance or improvement of transportation infrastructure. We focus on those that are

most relevant to the proposed work, i.e., mathematical modeling approaches that consider

either uncertainty or dependence among projects (such as that described in the preceding

paragraph).
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Resource allocation models that select transportation improvement projects under uncer-

tainty are somewhat scarce in the literature. A preliminary literature review identified a few

examples of existing work in this area (see, e.g., [12, 13]) and one paper [6] that was directly

relevant to the dredging resource allocation problem considered herein. We distinguish our

work from this research in the coming paragraphs.

Project dependence has been incorporated more frequently into resource allocation mod-

els for selecting transportation improvement projects. The problems of allocating budget

resources over time to (i) expand a series of locks [5] and (ii) rehabilitate a tree-structured

network of locks [21] have been modeled under the consideration of interconnected queueing

effects. Waterway project dependence has also been considered within the context of complex

logical relationships between projects (e.g., precedence relationships and mutual exclusivity)

[22], concepts that have received much attention within an abstract setting [4, 7]. Tao and

Schonfeld [12, 11] model dependence in roadway network improvement projects via consid-

ering traffic flow equilibrium.

Dependent project selection models have also been applied to the specific application of

dredging. Mitchell et al. [8] utilize a mixed integer linear program and heuristic methods

to select dredge projects to enable maximum flow of a set of origin-destination (o-d) com-

modities through the waterway network. In [8], o-d flow for a particular commodity may

be restricted if insufficient dredging is completed on the route from origin to destination.

Khodakarami et al. [6] extend [8] to consider the effect of shoaling after dredging projects

and provide two heuristics were proposed to find approximate solutions for this problem.

The work of Khodakarami et al. [6] is closest to our research. Like [6], we select budget-

limited maintenance projects for an o-d commodity flow network where uncertainty arises

due to unpredictable natural/hydrologic conditions in the waterway segments. By our un-

derstanding, however, the model in [6] is a deterministic program that condenses, for the

purposes of optimization, each location’s shoaling probability distribution into an expected

value. Our model, which incorporates uncertainty in how much budget is required for reac-

tive maintenance in a district, is a true two-stage stochastic program that enables weighing

the risk associated with planning dredging operations. Furthermore, our research enhances

previous models—in view of the challenge described in Item 2 of the above list— by exam-

ining the allocation of budget into districts.

The remainder of this paper is organized as follows: In the following section a scenario-

based stochastic program is proposed, and a Genetic Algorithm (GA) is provided to solve the

problem. Section 3 presents our dataset and summarizes preliminary computational results

used to tune algorithm performance. Based on these results, we apply the GA to a realistic,
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large-scale instance in Section 4, and we discuss benefits obtained via applying our modeling

and solution approach. Section 5 concludes.

2 Methodological Approach

In this section, we model the effect of inland dredging on transportation of different commodi-

ties through waterway network. Our model incorporates uncertainty due to unpredictable

reactive maintenance that occurs over the planning horizon. A scenario-based stochastic

program is developed to select maintenance projects and maximize the total value of flow

that is not disrupted. We begin developing the model by defining notation in the following

paragraph.

We represent the system as a network which river segments (defined by the set N) are the

nodes and each node has a specific capacity to transport different commodities (let K denote

the set of commodities). Commodity k ∈ K is defined by an origin segment ok ∈ N and a

destination segment dk ∈ N . We represent the network’s topology by defining P (k) ⊆ N as

the set of segments on the origin-destination path of commodity k (Note: Origin-destination

flow always moves along a unique path in the waterway network even though the network is

not tree). Let Z denote the set of districts that includes several waterway segments.

The overall structure of our model is a two-stage stochastic program in which the first-

stage allocates maintenance funds to districts in preparation for the upcoming dredging

season (typically beginning in early spring). Because funding is typically allocated to districts

several months before the dredging season, certain parameters (namely, how much reactive

dredging will be required in each district) are assumed to be unknown at the time funds are

allocated to districts. Uncertain reactive dredging requirements are modeled via a discrete

set of scenarios, and the probability of each scenario is assumed to be known. After funds are

allocated to districts, the reactive dredging scenario is revealed; then, second-stage decisions

variables are incorporated to select an optimal subset of routine dredging projects given the

budget allocation and observed reactive dredging requirements.

Towards developing a mathematical model for this problem, we first define some termi-

nology. We refer to the flow of a commodity k as the amount of commodity transported

via waterways from ok to dk. This flow is moved, generally speaking, over thousands of

barge trips in which several different commodities may be combined in one shipment. As a

result, each barge exhibits its own set of characteristics. Most importantly, depending on

the cargo loaded onto a barge, the barge has a characteristic draft (vertical distance from

the bottom of the barge to the water surface) that determines a minimum channel depth
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necessary for the barge to be able to pass. There are various factors that change the required

draft for barges to transport the cargo such as shoaling along the channels. If the required

draft is unavailable (due to shoaling and/or insufficient dredging), flow will be disrupted and

there will be unsatisfied demand in the waterway network. To decrease the disrupted flow,

maintenance projects (dredging the channels) should be selected among all possible projects

which seek to maximize the total value of the flow, i.e., over of all commodities successfully

transported from origin to destination. In the traditional network flow sense, channel depth

(determined by dredging and the amount of shoaling) determines for each commodity an

effective capacity—the maximum amount of a commodity (in tons) that can be transported

using barges with a draft of no more than the channel depth—for undisrupted flow; however,

we hereafter refer to this quantity as availability due to the fact that capacity has alterna-

tive, conflicting meanings in regards to the flow of water. The following sections develop

mathematical models for the maintenance project selection.

2.1 Optimization Model

We now develop our mathematical model using the following notation:

Sets and Indices:

• K: Set of commodities (k represents a commodity)

• P (k): Set of all segments in the origin-destination path of commodity k

• Ω: Set of scenarios (ω represents a scenario)

• Z: Set of all districts (z represents a district)

• N : Set of all segments (i represents a segment)

• Nz: Set of all segments in district z

Parameters:

• cωz : Cost of reactive maintenance at district z in scenario ω

• vk: Value per unit flow of commodity k

• Dk: Amount of commodity k to be transported from ok to dk

• B: Total budget available for dredging (routine and reactive)

• pω: Probability of scenario ω
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• σz: Penalty for lack of budget to do reactive maintenance at district z

• li: The maximum draft (ft) of vessels that can pass through segment i before routine

dredging

Decision Variables:

• Bz: The required budget for routine and reactive maintenance at district z

• Y kω
0 : Flow of commodity k (tons) in scenario ω passing through all of the segments on

the o-d path

• Xω
i : Feet of routine dredging at segment i ∈ N in scenario ω

• P ω
z : The lack of budget for reactive maintenance at district z in scenario ω

In accordance with the above, let Bz, z ∈ Z, denote the budgeted dollars for dredging

in district z. Uncertain requirements for reactive dredging are incorporated via a scenario-

based approach: Let Ω denote the set of scenarios (which may be sampled or constructed

based on dredging records data), and let cωz denote the dollars required for reactive dredging

in district z ∈ Z in scenario ω ∈ Ω. Given a realization of uncertainty (i.e., a value of ω),

we then select routine dredging jobs for completion: Let Xω
i denote the depth (in feet) of

routine dredging at segment i ∈ N in scenario ω ∈ Ω. For each district z ∈ Z and scenario

ω ∈ Ω, the routine dredging decisions must be feasible within the allocated budget Bz; else,

the objective is penalized σz units per dollar of budget shortage in each district z ∈ Z.

Variable Xω
i plays a role in determining the availability of segment i after routine main-

tenance. (For instance, not completing adequate dredging could result in barges running

aground if shoaling causes river depth to fall below the required draft for navigation.) Let

fk(Xω
i ) denote the availability (in tons) of segment i ∈ N after dredging (Xω

i ) unit in

scenario ω for commodity k. If Dk is the amount of commodity k we wish to transport

from ok to dk, the actual amount of commodity (tons) transported in scenario ω is given by

min{min{fk(Xω
i ) : i ∈ P (k)}, Dk} (i.e., the flow of commodity k is limited by the demand

of commodity k as well as the effective availability of each segment on the path from ok to

dk). We model this via introducing a variable Y kω
0 to represent the flow of commodity k

from ok to dk after routine dredging, along with constraints

Y kω
0 ≤ Dk, ∀k ∈ K, ∀ω ∈ Ω, (1)

Y kω
0 ≤ fk(Xω

i ), ∀i ∈ P (k),∀k ∈ K, ∀ω ∈ Ω. (2)
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Any objective rewarding flow of commodity k, will cause one of Constraints (1)–(2) to be

binding, thereby enforcing the desired relationship on Y kω
0 .

The stochastic program for our problem is given as

max
∑
ω∈Ω

∑
k∈K

pωvkY kω
0 −

∑
ω∈Ω

∑
z∈Z

pωσzP
ω
z , (3)

s.t. cωz +
∑
i∈Nz

φ(Xω
i ) ≤ Bz + P ω

z , ∀z ∈ Z, ∀ω ∈ Ω, (4)∑
z∈Z

Bz ≤ B, (5)

li +Xω
i = F ω

i , ∀i ∈ N,∀ω ∈ Ω, (6)

Y kω
0 ≤ Dk, ∀k ∈ K, ∀ω ∈ Ω, (7)

Y kω
0 ≤ fk(F ω

i ), ∀i ∈ P (k) ∩N,∀z ∈ Z, ∀k ∈ K, ∀ω ∈ Ω, (8)

Xω
i ≥ 0 and integer, ∀i ∈ N, ∀ω ∈ Ω, (9)

Bz ≥ 0,∀z ∈ Z, (10)

Y kω
0 ≥ 0, ∀ω ∈ Ω, ∀k ∈ K. (11)

The objective function (3) maximizes the expected value of increased flow after dredging

from origin to destination of all of the commodities. Constraints (4) require the cost of

reactive and routine dredging to be no more than the assigned budget to each district. If the

assigned budget is not enough for reactive maintenance at a district, a penalty is added to the

objective function. Constraints (5) allocate the dredging budget to each district based on the

total available budget. Flow of commodity k is limited by its demand (Constraint (7)) and

by the availability of segments after maintenance on the path from ok to dk (Constraint (8)).

Constraints (9)–(11) enforce the non-negativity and integrality.

Let li denote the maximum draft (in feet) of vessels that can pass through segment i

if no dredging is performed. (Note: In practice, this value depends on shoaling conditions

and water levels during the upcoming dredging season that are not known with certainty.

Our model could be extended, via changing li to lωi , to incorporate uncertainty in this value;

however, our experience suggests that data to support generating a probability distribution

on li is not currently available through the USACE, and we have therefore opted to utilize

the deterministic estimates li, which could be generated based on industry expertise.) Let

F ω
i denote the maximum level of vessel draft (in feet) after routine maintenance that can pass

through segment i in scenario ω. If the minimum and maximum possible drafts at segment

i are defined as ui and mi respectively, fk(j) , ∀j ∈ {ui, ui + 1, . . . ,mi}, is defined as the

tonnage for commodity k at a draft of j feet or less. The demand, Dk, of each commodity
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k is obtained by summing its o-d flow tonnages across all draft levels. Define bkj = fk(j),

∀j ∈ {ui, ui + 1, . . . ,mi} as the average tonnage of commodity k when the draft is less than

or equal to j. Note that the fk-functions are nonlinear in general. We therefore introduce

variables

Iωij =

{
1 if the maximum draft of segment i is j in scenario ω,

0 otherwise,
(12)

to linearize these functions, yielding a mixed integer linear program. Using these variables,

Model (3)–(11) is linearized by adding constraints

li +Xω
i = F ω

i , ∀i ∈ N, ∀ω ∈ Ω, (13)

F ω
i ≥

mi∑
j=ui

jIωij, ∀i ∈ N, ∀ω ∈ Ω, (14)

mi∑
j=ui

Iωij = 1, ∀i ∈ N, ∀ω ∈ Ω, (15)

Y kω
0 ≤

mi∑
j=ui

bkj I
ω
ij, ∀k ∈ K, ∀i ∈ P (k) ∩N, ∀ω ∈ Ω, (16)

in place of Constraint (8).

To obtain the maintenance dredging cost data, we stipulated a dredging cost model that

put the “full dredging” amount at each location equal to the historical total of all requested

dredging funds at each location (from dredging record in Navigation Data Center [18]), and

we assumed that full dredging would add three feet draft to each segment at the beginning

of the dredging year. We assume, as in [6], the cost of dredging of Xω
i feet is specified by

the function

φi(X
ω
i ) =

{
0 if Xω

i = 0,

0.25mi + 0.75mi(
Xω

i

L
)n otherwise,

(17)

where mi is the largest historical cost of dredging at segment i that is assumed to restore

L = 3 feet of depth. The first term in the Xω
i > 0 case (0.25mi) is the fixed mobilization cost

of dredging equipment and the second term represents cost of dredging Xω
i feet at segment

i and n is the degree of nonlinearity. We assume n = 2 and define binary variables

λωij =

{
1 if segment i is dredged for j units at scenario ω,

0 otherwise,
(18)
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in order to linearize φi. Letting hij ≡ φi(j) denote the cost of dredging segment i for j units,

Model (3)–(11) is linearized upon replacing Constraint (4) with the constraint set

cωz +
∑

i∈N(z)

3∑
j=0

hijλ
ω
ij ≤ Bz + Pz, ∀z ∈ Z, ∀ω ∈ Ω, (19)

3∑
j=0

λωij = 1, ∀i ∈ N, ∀ω ∈ Ω, (20)

Xω
i ≤

3∑
j=0

jλωij, ∀i ∈ N, ∀ω ∈ Ω. (21)

The resulting linear model is given as

max
∑
ω∈Ω

∑
k∈K

pωvkY kω
0 −

∑
ω∈Ω

∑
z∈Z

pωσzP
ω
z , (22)

s.t.
∑
z∈Z

Bz ≤ B, (23)

Y kω
0 ≤ Dk, ∀k ∈ K, ∀ω ∈ Ω, (24)

Constraints (13)–(16) and (19)–(21),

Xω
i and F ω

i ≥ 0 and integer, ∀i ∈ N, ∀ω ∈ Ω, (25)

Bz ≥ 0,∀z ∈ Z, (26)

λωij = 0 or 1, ∀i ∈ N, ∀ω ∈ Ω, ∀j ∈ {0, 1, 2, 3}, (27)

Iωij = 0 or 1, ∀i ∈ N, ∀j ∈ {ui, ui + 1, ...,mi}, ∀ω ∈ Ω, (28)

Y kω
0 ≥ 0, ∀ω ∈ Ω, ∀k ∈ K. (29)

The following section details our solution approach for this model.

2.2 Solution Methodology

After some initial experimentation with our model on a realistic data set, it became clear

that a heuristic solution approach would be necessary. We settled on a genetic algorithm

(GA), which we describe in the following subsections. For a more detailed introduction on

GA, the reader is referred to [2, 9].

2.2.1 Solution Encoding and Initial Solution

The chromosomes are defined by a string of weights Wz, z ∈ Z, assigned to each district

in which budget for each district can be computed according to its weight. Binary digits
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(i.e., 0 or 1) are used to encode weights of all districts and weights are uniformly distributed

on the set {1, ..., 2g}, where g (an input parameter) is a positive integer that represents the

number of bits needed to encode each weight. (Note: Larger values of g correspond to a more

resolute budget encoding that is more nearly continuous whereas smaller values of g lead to

budget encodings that are characteristically discrete. We utilize g = 20 in our experiments.)

Based on the weights Wz, z ∈ Z, budgets are assigned to districts according to

Bz =

(
Wz∑
z∈Z Wz

)
B. (30)

Since the problem is a two-stage stochastic program, we could have opted to encode the

variables of both stages; however, doing so is computationally expensive because the number

of variables grows in |N | and |Ω|. Furthermore, preliminary experiments suggested that it

was preferable to encode only the |Z| first stage variables, utilizing a subroutine to evaluate

(or estimate) the fitness of each |Z|-length chromosome by exploring second-stage solutions.

A set of random solutions is generated as the initial population. For each chromosome,

we assigned each bit equal to one (independently) with probability 0.5 and equal to zero

otherwise.

2.2.2 Fitness Function and Selection Procedure

For a given set of Bz-values, the fitness function is defined as the optimal objective value of

Model (19)–(29) that results when these Bz-values are fixed. Thus, our solution approach

decouples decisions by stage in the stochastic program: The GA handles the first-stage

(budget allocation) decisions, and a separate optimization subroutine evaluates the fitness of

the first-stage decisions by solving for the second-stage variable values. Unfortunately, the

second-stage problem remains a mixed integer program and, while it solves much faster than

the full Model (19)–(29) (without fixing Bz-values), it requires too much time to incorporate

this into the GA in each iteration. As a result, a greedy heuristic method is developed to find

a solution for Xω
i (∀i ∈ N,ω ∈ Ω), that approximates the fitness for each chromosome. The

second-stage heuristic ranks the river segments based on an estimated benefit-to-cost ratio

that is scenario independent (thus yielding savings in computational effort). In the estimated

benefit-to-cost ratio, we calculate the benefit associated with dredging x ∈ {1, 2, 3} feet at

segment i as the potential increase, summed across all commodities, in the availability of

segment i due to dredging x feet. This benefit is calculated as
∑

k:i∈P (k)(b
k
li+x − bkli). The

cost associated with dredging x feet is given by hi,x, and the estimated benefit-to-cost ratio

is therefore given by
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r(i, x) =

∑
k:i∈P (k)(b

k
li+x − bkli)

hi,x
, i ∈ N, x ∈ {1, 2, 3}. (31)

Note that hi,0 need not be subtracted from the denominator because φi(0) = 0. The esti-

mated benefit-to-cost ratio r(i, x) is calculated for each segment i ∈ N and dredging level

x ∈ {1, 2, 3} and sorted in decreasing order. Then, for each scenario ω ∈ Ω, pairs (i, x) are

selected (and the corresponding Xω
i -value set equal to x) greedily (i.e., largest r(i, x) value

first) until the budget for scenario ω (i.e., Constraint (19)) has been exhausted. If there

is a remaining budget at the end of the first round of selection, we start the second round

(using the same sorted ordering of (i, x)-pairs but excluding any pairs (i, x′) corresponding

to a segment i that has already been selected for dredging at x′ feet or more) to see if there

is an opportunity to increase the level of dredging at some segments.

The selection criteria of chromosomes to produce offspring is based on a roulette-wheel

procedure in which the probability of selecting a particular chromosome is computed by

its fitness value divided by the total fitness value summed over all chromosomes in the

population.

2.2.3 Genetic Operators

The operators in genetic algorithm influence the performance of the heuristic and include

three simple types: selection, crossover and mutation. The selection operator selects chro-

mosomes for reproduction. The probability of selecting a chromosome depends on the

chromosome’s fitness value. We apply two crossover subroutines, which take as input two

chromosomes selected for reproduction: One-point crossover randomly chooses one position

z ∈ {1, . . . , Z} and generates two new offspring by interchanging the substring of each par-

ent chromosome that appears after position z; Two-point crossover randomly chooses two

positions z, z′ ∈ {1, . . . , Z}, z < z′, and generates two new offspring by interchanging the

substrings of each parent chromosome that appear between positions z and z′. The crossover

rate λ (0 ≤ λ ≤ 1) determines the proportion of each generation that is created by crossover.

If the rate is one, all of the population in the new generation is produced by crossover, but

if it is zero all new children are directly a copy of previous population. The rates λ1 and λ2

specify the proportion of each generation generated by one-point and two-point crossover,

respectively. The summation of these rates should be one.

After crossover has been completed and (if λ < 1) chromosomes copied from the previ-

ous generation to ensure the number of chromosomes in each generation remains constant,

14



Figure 1: Example of two-point crossover

Figure 2: Example of mutation

mutation is applied to each chromosome. Mutation selects one or more genes randomly and

swaps their values (i.e., from 0 to 1 or from 1 to 0). We restrict the mutation operator to

apply only to genes that change the weight and hence the budget assignment drastically.

Specifically, given the binary encoding of weights Wz, we restrict single-gene mutation to

randomly choose a single district z ∈ Z and randomly alter only one of the first six bits of

its Wz-value. In multi-gene mutation, we repeat this process four times.

The mutation probability µ (0 ≤ µ ≤ 1) is the proportion of chromosomes selecting

for mutation in the new generation. If mutation is applied to a chromosome, single-gene

mutation is used with probability µ1 (0 ≤ µ1 ≤ 1); otherwise, multi-gene mutation is used.

After performing crossover and mutation, the fitness of each new chromosome is calculated

and a proportion e (0 ≤ e ≤ 1) of the highest-fitness chromosomes from the previous

generation are introduced to replace the worst chromosomes of the new population. Two

examples are illustrated in Figures 1 and 2 to represent the procedure of crossover and

mutation in our problem. Pseudocode for the GA is provided in Figure 3.

15



Figure 3: Genetic Algorithm Pseudocode
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3 Results/Findings

In this section, we demonstrate (and tune) the performance of our model and algorithm

using data obtained for the U.S. inland waterway network. A total of 7703 commodities are

defined based on different paths in this network by extracting average origin-destination (o-

d) tonnages—along with the associated draft, in feet—over 2009–2015 from the Waterborne

Commerce Statistics Center [19]. Functions fk(j) are defined with respect to this data as the

average tonnage (across all years) passing at a draft of no more than j feet, where j ranges

from 6 to 12. The value of demand (Dk) for each commodity is assumed as the largest

average tonnage that could be transported at each path. Also, the value of each commodity

(vk) is assumed to be one so that the model maximizes the expected tonnage that can be

transported through the network.

There are 12 different districts (depicted in Figure 5) that have historical inland dredging

record from 1990 to 2015 and the total number of segments in these districts is 440 (depicted

in Figure 4). With a few exceptions that are explained in the following sentences, we assume

that li = 7, ∀i ∈ N ; thus, each segment has an initial depth of 7 feet, which can be improved

by completing routine dredging. Exceptions to this rule were made based upon a search of the

dredging records data set, provided in [18], which was executed for each of the 440 segments

in our data set in attempt to identify evidence of historical dredging at that location. This

was particularly cumbersome (and likely subject to some error) because the dredging records

data set does not include a unique identifier for the river segment associated with each dredge

job; rather, the data set includes a text string associated with each completed dredge job that

provides some reference to the job location but may not include enough detail to pinpoint

the job to one of our segments. (And furthermore, different strings of text may be used to

identify jobs completed at the same location.) Still, we were able to identify some evidence

of historical dredging for most of our 440 segments. For those segments at which at least 3

dredging records (362 of the 440 segments) were identified over 1990–2015, we set li = 7. For

the remaining segments, we set li = 10, which discourages dredging via allowing the passage

of traffic at the 8-, 9-, and 10-foot drafts even without completing any dredging. Naturally,

we also removed availability constraints of the form (7)–(8) associated with coastal/deep-

draft segments at which a lack of dredging is not likely to cause a disruption for barges meant

to travel over inland waterways.

Using the same mapping of dredging records to segments in our data set, we then applied

Equation (17) to assign each segment a cost of dredging 0, 1, 2, or 3 feet (i.e., the hij-values).

In completing this process, we encountered many of the same obstacles as described in the

previous paragraph. Additionally, cost data are missing for many of the dredging records
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that we were able to map back to an individual location. We estimated hij-values using only

those records that both (i) could be mapped to a specific location and (ii) included cost data.

The result is that our estimates of hij are subject to error due to both small sample sizes

and the potential for our own misclassification of dredging records to waterway segments.

For this data set, we then generate |Ω| scenarios which describe the uncertain require-

ments for reactive dredging. Our conversations with industry experts suggests that reactive

dredging is highly variable, comprising anywhere between 40% and 80% of total inland

maintenance dredging costs. Thus, we generate parameters cωz , z = 1, . . . , Z, according to a

continuous uniform distribution that spans the interval beginning at 40% of historical aver-

age expenditures in district z and ends at 80% of historical average expenditures in district

z. We assume cωz -values in each scenario are generated independently, and we take these

scenarios to be equally likely (i.e., pω = 1/|Ω|, ∀ω ∈ Ω). The assumptions underlying the

instance generation process were necessary due to the challenges in obtaining historical data

to support generation of a more realistic instance (e.g., modeling dependence among reactive

dredging requirements in different districts).

Initially, for the purposes of demonstrating the performance of our GA against a known

optimal solution, we examine smaller instances with |Ω| ∈ {2, 5, 10} scenarios and a to-

tal available budget B ∈ {$140M, $160M, $180M, $200M}. We take the budget shortfall

penalty σz to be equal to the summation of total demands for all of the o-d paths. (Note:

For this preliminary set of instances, σz turns out not to have any effect on the objective

value because the selected levels of total budget are large enough to prevent any chance of

shortfall. However, for the problems with low budget level, we will demonstrate a sensitivity

analysis for the value of penalty in Section 4.) Additionally, because there are a large number

of o-d pairs represented in the commodity flow data set, the result is a large-scale optimiza-

tion problem which is difficult to solve optimally. Pareto analysis (see Figure 6) reveals that

86% of total tonnage of commodities corresponds to 21% of o-d paths. Based upon this

analysis, we have used the reduced set of 1690 o-d pairs to construct our problem instances.

Preliminary computational results verified that this would allow us to obtain more sensible

results from the optimization. Table 1 displays the results obtained from solving each of

these instances using both CPLEX (rows labeled CPLEX) and our GA (rows labeled GA)

with population size 50, 400 iterations, and parameter values λ = 0.6, λ1 = 0.6, µ = 0.2,

µ1 = 0.2 and e = 0.4. Both algorithms are implemented in JAVA using the University of

Arkansas High Performance Computing Center, and the CPLEX implementation employs

version 12.4 callable libraries. For each instance and algorithm (i.e., either CPLEX or GA),

we report the optimal objective value (in expected tonnage) and the optimality gap (Gap

18



Figure 4: Districts Figure 5: Waterway segments

Figure 6: Pareto Analysis
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%, defined as the absolute difference between the obtained objective and the objective value

upper bound attained with CPLEX.) Even in these preliminary instances, which have a

relatively small number of scenarios, we were forced to terminate CPLEX before optimality

due to memory issues. Specifically, we terminate the instances with |Ω| = 5 (respectively,

|Ω| = 10) as soon as CPLEX is able to prove it has obtained a solution within 5% (respec-

tively, 10%) of optimality. This is why the rows labeled CPLEX contain nonzero gaps for

the instances with |Ω| ∈ {5, 10}.
The results demonstrate that the optimality gap increases by increasing the number of

scenarios. In order to enhance the performance of our GA for instances with more scenarios,

we analyzed the optimal budget allocation (provided by CPLEX) for the smaller instances.

This analysis revealed that greater budgets tend to be assigned to districts containing many

segments with relatively large benefit-to-cost ratios, as calculated by Equation (31). There-

fore, we defined two new budget assignments (to replace Equation 30) based on the weights

of each district to drive towards budget allocations possessing this structure:

1. The estimated benefit-to-cost ratio r(i, x) is calculated based on Equation (31) for each

segment of each district. The weight Wz for each district z ∈ Z is then adjusted by a

factor of
∑

i∈Nz

∑3
x=1 r(i, x), and we use the adjusted weights to assign budget to each

district z ∈ Z as

Bz =

(
Wz

∑
i∈Nz

∑3
x=1 r(i, x)∑

z∈Z Wz

∑
i∈Nz

∑3
x=1 r(i, x)

)
B. (32)

2. The number of segments that have a benefit-to-cost ratio (
∑

i∈N
∑3

x=1 r(i, x)) in excess

of one percent is counted for each district (let Mz denote the count for district z ∈ Z)

and the budget for district z ∈ Z is assigned as

Bz =

(
Wz max{Mz, 1}∑
z∈Z Wz max{Mz, 1}

)
B, (33)

where weights are adjusted by a factor of max{Mz, 1} instead of Mz to prevent fixing

a district’s budget to zero.

Utilizing these budgeting strategies, we solved the instances from Table 1 again, this time

(i) applying all three of the approaches (i.e., Equations (30), (32), and (33)) to convert the

Wz-values in to an allocated budget to each district and (ii) selecting, for each chromosome,

the approach that yields the largest fitness value. The new results and the optimality gap

are represented in Table 1, where rows labeled GA′ correspond to the improved GA. These
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Objective value in kton (Gap %)
|Ω| Algorithm B = $140M B = $160M B = $180M B = $200M

2

CPLEX 171,497.32 (0.0%) 181,924.51 (0.0%) 189,681.59 (0.0%) 212,876.80 (0.0%)
GA 134,296.65 (21.6%) 166,217.88 (8.6%) 168,275.93 (11.3%) 178,784.10 (16.1%)
GA′ 163,396.87 (4.7%) 166,602.72 (8.4%) 171,388.86 (9.6%) 187,331.74 (11.9%)
GA′′ 165,556.357 (3.5%) 172,187.314 (6.9%) 178,924.38 (5.7%) 192,456.40 (9.6%)

5

CPLEX 170,561.17 (2.2%) 180,485.83 (5.2%) 196,343.55 (4.1%) 217,005.51 (4.2%)
GA 135,445.55 (22.3%) 136,203.43 (28.4%) 166,895.48 (18.4%) 177,252.76 (21.7%)
GA′ 163,723.64 (6.1%) 166,217.68 (12.6%) 168,941.00 (17.4%) 178,717.50 (21.1%)
GA′′ 164,300.35 (5.7%) 172,187.314 (9.5%) 172,017.092 (15.6%) 193,758.093 (14.5%)

10

CPLEX 161,723.52 (6.7%) 176,498.93 (8.2%) 188,761.00 (9.3%) 213,816.44 (5.6%)
GA 135,445.55 (22.5%) 136,203.43 (28.9%) 166,895.48 (19.8%) 177,252.76 (21.5%)
GA′ 163,323.40 (5.7%) 165,978.12 (13.6%) 169,321.82 (18.6%) 177,940.58 (21.4%)
GA′′ 165,329.95 (4.6% ) 170,211.68 (11.4%) 171,092.64 (17.8%) 190,789.01 (15.8%)

Table 1: Objective value and optimality gap for preliminary experiments

results suggest that the optimality gap is reduced by adding new budget allocation strategies

to the genetic algorithm; however, we also made one additional improvement to GA′ in which,

after GA′ terminates, we then use CPLEX to solve the second-stage problem exactly using

the budget allocation obtained by GA′. Results of the modified GA are also included in

Table 1 (with rows labeled as GA′′). This helps to find the optimal objective value for the

best solution found by GA and hence reduce the optimality gap.

Table 2 reports the CPU time for each algorithm and instance from our preliminary

experimentation. Results in Tables 1 and 2 reveal that GA′′ provides a nice balance of

obtaining (as compared to GA and GA′) a high-quality solution and (as compared to CPLEX)

running quickly. (Note: In some cases, the GA′′ time actually exceeds the full CPLEX time;

however, this is due to the fact that we terminated the full CPLEX implementation early,

whereas we ran the second-stage-only CPLEX implementation runs to full optimality.)

3.1 Tuning the GA

In order to find an effective setting for parameters in our GA, we perform a procedure based

on statistical design of experiments proposed by Coy et al. [3]. The first step is selecting

a subset of instances to analyze the results which is called analysis set. This set should

cover different sizes of problems. The size of our problem is define based on the number

of scenarios. We choose three problems with 20, 30 and 40 number of scenarios and solve

them with total budget level of $160M, 50 population size and 100 number of iterations.

In the second step, we determine the initial set of parameters (design center), the size of

incremental change of each parameter (∆) and the limits of each parameter’s value. These
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Computation time (s)
|Ω| Algorithm B = $140M B = $160M B = $180M B = $200M

2

CPLEX 648.8 798.6 6575.7 127.1
GA 46.0 47.2 47.5 47.6
GA′ 116.1 112.9 384.7 117.0
GA′′ 132.0 526.0 2903.02 2114.0

5

CPLEX 104.0 1103.6 2008.8 1147.5
GA 102.4 101.2 94.4 100.0
GA′ 198.7 203.4 190.5 227.3
GA′′ 279.0 903.0 209.0 3307.0

10

CPLEX 198.8 135.5 25449 275.5
GA 192.8 188.8 191.6 189.2
GA′ 357.9 365.3 358.8 404.1
GA′′ 373.0 1368.3 375.0 3095.0

Table 2: CPU time for preliminary experiments

Parameter Min value Design center ∆ Max value
Crossover rate (λ) 0 0.6 0.2 1

One-point crossover (λ1) 0 0.6 0.2 1
Mutation probability (µ) 0 0.2 0.2 1
Mutation one-gene (µ1) 0 0.2 0.2 1

Elitism (e) 0 0.4 0.2 1

Table 3: Min value, design center, ∆, and max value for parameters in GA

values are obtained by conducting a pilot study for a few number of trials and select the

values yielding the best solution. Since, λ1 + λ2 and µ1 + µ2 should be one, we conduct the

experiment for only five parameters instead of seven parameters. In Table 3, we show these

values for parameters of our GA.

The third step is performing a factorial experimental design. We choose a full factorial

design with 25 = 32 runs. We convert this design to a matrix of coded variables shown

in Table 6. To obtain the parameter’s settings for each run, the ∆-value is added or sub-

tracted to the design center depending on the sign of the coded variables in Table 6 and

five replications is conducted for each parameter vector using different seeds to initialize the

heuristic’s random number generator in each case. Then, a linear regression model is fitted

to the average results of five runs to find an estimate of response surface. The results of the

regression analysis for three instances are represented in Tables 4. Based on the analysis,

all models are significant at the 0.05 level. The minimum adjusted R2 is 0.5224 and the

maximum value is 0.6475. Also, each parameter is statistically significant in at least one
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Problem Adj. R2 Intercept λ µ λ1 µ1 e
20 scenarios 0.6475 165691 −463 4638 −185 −86 −3048
30 scenarios 0.6381 165305 41 4249 −107 212 −2730
40 scenarios 0.5224 164015 2356 5030 −412 636 −4119

Table 4: Coefficients of linear regression model

Problem λ µ λ1 µ1 e
20 scenarios −0.0199 0.2 −0.0079 −0.0037 −0.1314
30 scenarios 0.0019 0.2 −0.005 0.0099 −0.1285
40 scenarios 0.0936 0.2 −0.0164 0.0253 −0.1638

Table 5: Step size for each parameter

regression model based on their p-values.

Since we are maximizing, we find the path of steepest ascent on the response surface. In

order to move along this path, we need to find the step size for each parameter within each

instance. At first, We find the maximum of the absolute values of each parameter coefficient

for a particular instance, and then divide the regression coefficient of each parameter by

this maximum value. The step size is multiplying this ratio by ∆. The step sizes of each

parameter at each instance are represented in Table 5.

The next step is evaluating parameter settings along the regression equation’s steepest

ascent direction from the design center. The procedure starts at the design center, and

then, we add the step size of each parameter to its previous level. In the case of violating

the upper or lower levels of any parameter, we hold that parameter constant and continue

making steps with the other parameters. Then, we perform five experiments at each step

and calculate the average objective value to determine the performance of GA for each set of

parameter values. We continue making steps along the path until all of the parameters reach

their maximum or minimum level. Tables 7–9 represent first 20 steps for three problems.

The maximum average values for problems with 20, 30, and 40 scenarios are respectively

obtained in steps 3, 3, and 17. Finally, we select the parameter settings associated with the

maximum objective value. In the final step, the average of parameter values for the three

instances is calculated to obtain the final set of parameters (Table 10).

3.2 Selecting Budget Shortfall Parameter Values

Using the GA parameters calculated in Table 10, we then solved a set of instances to de-

termine an appropriate value for the budget shortfall penalty parameters σz. We apply
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Run λ µ λ1 µ1 e
1 −1 −1 −1 −1 −1
2 +1 −1 −1 −1 −1
3 −1 +1 −1 −1 −1
4 +1 +1 −1 −1 −1
5 −1 −1 +1 −1 −1
6 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1
8 +1 +1 +1 −1 −1
9 −1 −1 −1 +1 −1
10 +1 −1 −1 +1 −1
11 −1 +1 −1 +1 −1
12 +1 +1 −1 +1 −1
13 −1 −1 +1 +1 −1
14 +1 −1 +1 +1 −1
15 −1 +1 +1 +1 −1
16 +1 +1 +1 +1 −1
17 −1 −1 −1 −1 +1
18 +1 −1 −1 −1 +1
19 −1 +1 −1 −1 +1
20 +1 +1 −1 −1 +1
21 −1 −1 +1 −1 +1
22 +1 −1 +1 −1 +1
23 −1 +1 +1 −1 +1
24 +1 +1 +1 −1 +1
25 −1 −1 −1 +1 +1
26 +1 −1 −1 +1 +1
27 −1 +1 −1 +1 +1
28 +1 +1 −1 +1 +1
29 −1 −1 +1 +1 +1
30 +1 −1 +1 +1 +1
31 −1 +1 +1 +1 +1
32 +1 +1 +1 +1 +1

Table 6: Augmented matrix of coded variables

24



Step λ µ λ1 λ2 µ1 µ2 e average
1 0.6 0.2 0.6 0.4 0.2 0.8 0.4 166,119.570
2 0.5801 0.4 0.5921 0.4079 0.1963 0.8037 0.2686 166,106.738
3 0.5602 0.6 0.5842 0.4158 0.1926 0.8074 0.1372 166,137.529
4 0.5403 0.8 0.5763 0.4237 0.1889 0.8111 0.0058 166,020.249
5 0.5204 1 0.5684 0.4316 0.1852 0.8148 0.0058 166,105.279
6 0.5005 1 0.5605 0.4395 0.1815 0.8185 0.0058 166,053.415
7 0.4806 1 0.5526 0.4474 0.1778 0.8222 0.0058 166,076.680
8 0.4607 1 0.5447 0.4553 0.1741 0.8259 0.0058 166,044.733
9 0.4408 1 0.5368 0.4632 0.1704 0.8296 0.0058 166,078.417
10 0.4209 1 0.5289 0.4711 0.1667 0.8333 0.0058 166,084.452
11 0.401 1 0.521 0.479 0.163 0.837 0.0058 166,000.877
12 0.3811 1 0.5131 0.4869 0.1593 0.8407 0.0058 165,982.361
13 0.3612 1 0.5052 0.4948 0.1556 0.8444 0.0058 166,046.475
14 0.3413 1 0.4973 0.5027 0.1519 0.8481 0.0058 166,071.494
15 0.3214 1 0.4894 0.5106 0.1482 0.8518 0.0058 166,074.446
16 0.3015 1 0.4815 0.5185 0.1445 0.8555 0.0058 166,025.181
17 0.2816 1 0.4736 0.5264 0.1408 0.8592 0.0058 166,100.2591
18 0.2617 1 0.4657 0.5343 0.1371 0.8629 0.0058 166,085.404
19 0.2418 1 0.4578 0.5422 0.1334 0.8666 0.0058 166,068.941
20 0.2219 1 0.4499 0.5501 0.1297 0.8703 0.0058 166,012.146
...

Table 7: Parameter settings at each step (20 scenarios)

Step λ µ λ1 λ2 µ1 µ2 e average
1 0.6 0.2 0.6 0.4 0.2 0.8 0.4 165,754.758
2 0.6019 0.4 0.595 0.405 0.21 0.79 0.2715 166,055.983
3 0.6039 0.6 0.5899 0.4101 0.22 0.78 0.143 166,088.644
4 0.6058 0.8 0.5849 0.4151 0.2299 0.7701 0.0145 165,900.029
5 0.6077 1 0.5799 0.4201 0.2399 0.7601 0.0145 166,037.384
6 0.6096 1 0.5748 0.4252 0.2499 0.7501 0.0145 165,911.144
7 0.6116 1 0.5698 0.4302 0.2599 0.7401 0.0145 165,980.612
8 0.6135 1 0.5647 0.4353 0.2699 0.7301 0.0145 166,027.542
9 0.6154 1 0.5597 0.4403 0.2798 0.7202 0.0145 165,947.292
10 0.6174 1 0.5547 0.4453 0.2898 0.7102 0.0145 165,908.780
11 0.6193 1 0.5496 0.4504 0.2998 0.7002 0.0145 166,063.777
12 0.6212 1 0.5446 0.4554 0.3098 0.6902 0.0145 165,940.895
13 0.6232 1 0.5396 0.4604 0.3197 0.6803 0.0145 165,969.434
14 0.6251 1 0.5345 0.4655 0.3297 0.6703 0.0145 166,020.721
15 0.627 1 0.5295 0.4705 0.3397 0.6603 0.0145 166,072.009
16 0.6289 1 0.5245 0.4755 0.3497 0.6503 0.0145 165,916.764
17 0.6309 1 0.5194 0.4806 0.3597 0.6403 0.0145 166,010.784
18 0.6328 1 0.5144 0.4856 0.3696 0.6304 0.0145 166,067.654
19 0.6347 1 0.5093 0.4907 0.3796 0.6204 0.0145 165,942.106
20 0.6367 1 0.5043 0.4957 0.3896 0.6104 0.0145 165,954.107
...

Table 8: Parameter settings at each step (30 scenarios)
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Step λ µ λ1 λ2 µ1 µ2 e average
1 0.6 0.2 0.6 0.4 0.2 0.8 0.4 165812.497
2 0.6936 0.4 0.5836 0.4164 0.2253 0.7747 0.2362 165,871.898
3 0.7872 0.6 0.5672 0.4328 0.2506 0.7494 0.0724 165,837.506
4 0.8808 0.8 0.5508 0.4492 0.2759 0.7241 0.0724 165,867.396
5 0.9744 1 0.5344 0.4656 0.3012 0.6988 0.0724 165,883.435
6 0.9744 1 0.518 0.482 0.3265 0.6735 0.0724 165,871.857
7 0.9744 1 0.5016 0.4984 0.3518 0.6482 0.0724 165,865.739
8 0.9744 1 0.4852 0.5148 0.3771 0.6229 0.0724 165,873.022
9 0.9744 1 0.4688 0.5312 0.4024 0.5976 0.0724 165,824.245
10 0.9744 1 0.4524 0.5476 0.4277 0.5723 0.0724 165,854.621
11 0.9744 1 0.436 0.564 0.453 0.547 0.0724 165,885.148
12 0.9744 1 0.4196 0.5804 0.4783 0.5217 0.0724 165,889.192
13 0.9744 1 0.4032 0.5968 0.5036 0.4964 0.0724 165,869.559
14 0.9744 1 0.3868 0.6132 0.5289 0.4711 0.0724 165,884.340
15 0.9744 1 0.3704 0.6296 0.5542 0.4458 0.0724 165,871.127
16 0.9744 1 0.354 0.646 0.5795 0.4205 0.0724 165,861.755
17 0.9744 1 0.3376 0.6624 0.6048 0.3952 0.0724 165,895.704
18 0.9744 1 0.3212 0.6788 0.6301 0.3699 0.0724 165,876.327
19 0.9744 1 0.3048 0.6952 0.6554 0.3446 0.0724 165,838.856
20 0.9744 1 0.2884 0.7116 0.6807 0.3193 0.0724 165,852.752
...

Table 9: Parameter settings at each step (40 scenarios)

Problem λ µ λ1 λ2 µ1 µ2 e
20 scenarios 0.5602 0.6 0.5842 0.4158 0.1926 0.8074 0.1372
30 scenarios 0.6039 0.6 0.5899 0.4101 0.22 0.78 0.143
40 scenarios 0.9744 1 0.3376 0.6624 0.6048 0.3952 0.0724

Average 0.71 0.73 0.51 0.49 0.34 0.66 0.11

Table 10: Selected parameters
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Figure 7: Objective value vs. penalty for different budget levels

GA′′ (this time terminating the final CPLEX run at an optimality threshold of 10% because

solving to optimality is too time consuming) to a set of instances corresponding to each

combination of B ∈ {$90M, $95M, $100M, $110M} and σz ∈ {0, 0.01, 0.1, 1, 5, 10, 15, 20}.
(Note: We set σz equal to the same value for all z ∈ Z.) Each instance has |Ω| = 100

scenarios in order to provide a more realistic representation of uncertainty. Results from

this set of experiments are displayed in Figure 7. Based upon these experiments, we settled

on σz = 1 as an acceptable penalty value because it seems to be a sufficient deterrent for

exceeding each district’s budget; however, it avoids some of the numerical issues that come

with setting an arbitarily large (i.e., big-M type) penalty value.

4 Impacts/Benefits of Implementation

This section demonstrates the capabilities of our optimization model based upon applying

GA′′ (again terminating the final CPLEX at a 10% optimality threshold) to a set of in-

stances corresponding to |Ω| = 100 scenarios and B ∈ {$90M, $95M, $100M, $110M, $120M,

$140M, $160M, $180M, $200M}. We use the penalty value σz = 1, z ∈ Z, as explained in

the previous section. The instances are constructed using the same approach as described

at the beginning of Section 3.
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Figure 8: Objective value vs. budget

Figure 8 displays the GA′′ objective value associated with each of the nine different

budget levels. Naturally, the expected tonnage of commodities increases as more resources

are made available for dredging. Furthermore, the increase seems to be sharpest before the

B = $140M level, indicating that a significant portion of the impact can created without

fully dredging all segments.

Figure 9 depicts each district’s shortfall probability (i.e., the proportion of P ω
z -variables

that take on a positive value in each district). This probability represents the likelihood

that district z will not have enough funds to complete the year’s emergency/reactive jobs

and therefore represents a measure of the risk of a significant disruption to navigation.

In resource-limited instances (e.g., B ∈ {$90M, $95M, $100M}), districts have shortfall

probabilities as large as 0.27. This risk is reduced via increasing district budgets until

(at B = $110M) none of the district budgets are ever exceeded.

Figure 10 summarizes the first-stage decision variables, i.e., the percent of available bud-

get that is allocated to each district. Results demonstrate that that resources are focused

on several key districts (New Orleans, Mobile, Pittsburgh, Louisville, and Huntington). As

the budget level is increased, the budget allocated to New Orleans and Mobile is increasing

slowly (and the percentage thus decreases). This is presumably due to the fact that these

districts are so critical to commodity flow that (even in the low budget instances) sufficient

budget is allocated to these districts to perform a critical set of routine dredging jobs while

simultaneously ensuring availability of funds for completing reactive jobs. In addition, the

dredging costs for these districts tend to be higher, which serves to increase the budget al-
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Figure 9: Probability of shortfall vs. budget for each district

located to these districts. Significant budgets are also allocated to Huntington, Louisville,

and Pittsburgh. In these districts, a larger portion of the budget is used for routine dredging

because the commodity tonnages passing through these districts are large relative to other

districts while the routine dredging cost is relatively inexpensive. The Memphis, St. Paul,

Rock Island, St. Louis, and Little Rock districts allocate enough budget to cover only reac-

tive dredging. This is consistent with the dredging record data, which suggests that these

districts are infrequently dredged, and dredging in these districts is almost always reactive

in nature. Vicksburg contains a few sites selected for routine dredging; however, this district

also appears less frequently in the dredging records, which is reflected by the smaller budget

allocation in Figure 10.

We depict the second-stage solutions (i.e., routine maintenance dredging levels) in Ta-

ble 11. Specifically, because each scenario’s second-stage (routine dredging) variables (Xω
i )

may be different, we calculate the average dredging depth for each segment i as

X̄i = (1/|Ω|)
∑
ω∈Ω

Xω
i . (34)

We then round X̄i to the nearest integer (e.g., the rounded value is 2 if 1.5 < X̄i ≤ 2.5,

but the rounded value is 3 if 2.5 < X̄i) and report in Table 11 a count, by district, of the

number of segments whose rounded average dredging depths equals 0, 1, 2, or 3. The table
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Figure 10: Percentage of budget assigned to each district

verifies some of the discussion in the preceding paragraph (e.g., regarding relatively stable

dredging levels in New Orleans and Mobile as the budget increases and the fact that higher

budget levels tend to concentrate resources on routine dredging in Pittsburgh, Louisville,

and Huntington).

5 Recommendations and Conclusions

In this project, we consider a problem in which limited resources are allocated to districts

for completing inland dredging projects. Uncertainty arises in this problem due to the

underlying dynamics of the inland waterway system, in which natural events (e.g., weather

or shoaling) can cause water levels to fall below the required depth for barges to pass. For

this system, a scenario-based stochastic programming model is developed to maximize the

expected value of origin-destination flow transporting through the network. We develop a

genetic algorithm to solve realistically sized instances, and we report results obtained from

an instance constructed for the U.S. waterway network.

Results demonstrate the tradeoff between investment in maintenance dredging and both

(i) the network’s overall capacity for transporting commodities (ii) risk associated with hav-

ing insufficient budget to complete emergency projects. They also exhibit some intuitive

characteristics such as budget allocations that drive towards more significant dredging at lo-

cations that transport larger amounts of freight and/or have cheaper dredging project costs.

Still, we would not recommend implementing the model’s output at this point. Rather, we
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Table 11: Count of waterway segments by rounded average dredging depth for each budget
level
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90

Segments at 0 ft 37 22 94 20 12 2 17 10 103 39 32 24 412
Segments at 1 ft 6 0 11 0 0 0 0 0 3 0 0 4 24
Segments at 2 ft 0 0 3 0 0 0 0 0 0 0 1 0 4
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 0 0 0

95

Segments at 0 ft 37 22 93 20 12 2 17 10 103 39 32 24 411
Segments at 1 ft 4 0 6 0 0 0 0 0 3 0 0 4 17
Segments at 2 ft 2 0 9 0 0 0 0 0 0 0 1 0 12
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 0 0 0

100

Segments at 0 ft 38 22 90 20 12 2 17 10 102 39 32 24 408
Segments at 1 ft 5 0 8 0 0 0 0 0 3 0 0 4 20
Segments at 2 ft 0 0 10 0 0 0 0 0 1 0 1 0 12
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 0 0 0

110

Segments at 0 ft 37 21 90 20 12 2 17 10 102 27 32 20 390
Segments at 1 ft 6 1 10 0 0 0 0 0 3 0 0 1 21
Segments at 2 ft 0 0 8 0 0 0 0 0 1 12 0 7 28
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 1 0 1

120

Segments at 0 ft 37 22 91 20 12 2 17 10 102 21 32 0 366
Segments at 1 ft 6 0 7 0 0 0 0 0 3 0 0 13 29
Segments at 2 ft 0 0 10 0 0 0 0 0 1 18 0 11 40
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 1 4 5

140

Segments at 0 ft 36 22 90 20 12 2 17 10 102 10 32 4 357
Segments at 1 ft 7 0 10 0 0 0 0 0 3 1 0 10 31
Segments at 2 ft 0 0 8 0 0 0 0 0 1 28 0 14 51
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 1 0 1

160

Segments at 0 ft 36 21 88 20 12 2 17 10 102 11 31 0 350
Segments at 1 ft 5 1 9 0 0 0 0 0 2 0 1 14 32
Segments at 2 ft 2 0 11 0 0 0 0 0 2 28 0 11 54
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 1 3 4

180

Segments at 0 ft 38 22 87 20 12 2 17 10 101 0 31 0 340
Segments at 1 ft 5 0 7 0 0 0 0 0 3 10 1 9 35
Segments at 2 ft 0 0 14 0 0 0 0 0 2 5 0 4 25
Segments at 3 ft 0 0 0 0 0 0 0 0 0 24 1 15 40

200

Segments at 0 ft 37 22 89 20 12 2 17 10 102 8 16 6 341
Segments at 1 ft 3 0 9 0 0 0 0 0 2 2 0 8 24
Segments at 2 ft 3 0 10 0 0 0 0 0 2 29 16 14 74
Segments at 3 ft 0 0 0 0 0 0 0 0 0 0 1 0 1

Total 43 22 108 20 12 2 17 10 106 39 33 28 440
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feel that a more thorough assessment of the cost/effect functions (i.e., f(·) and φ(·)) as-

sociated with each segment would lead to improved results that may have differences from

those reported herein, and would recommend revisiting this before proceeding with the im-

plementation of our model’s results. Further experimentation with the model could also lend

additional insights (e.g., what are the potential benefits of combining the dredging operations

in two or more districts?) that may be useful in developing effective maintenance dredging

strategies.

A subtle result that we found interesting was the impact—sometimes reducing the overall

optimality gap by as much as 6.6%—of solving the second-stage project selection problem

exactly (i.e., in algorithm GA′′) as opposed to using a greedy approach (as in algorithm GA′).

(Note: The reduction in the optimality gap would be a great deal more if we could afford

to solve the second-stage problem exactly at every step.) This suggests there is significant

value to be obtained via developing more effective solution techniques for large-scale resource

allocation models (i.e., that include thousands of o-d pairs, hundreds of waterway segments,

and hundreds of scenarios) such as ours—as opposed to allocating based on a simple rule of

thumb. With this in mind, our research motivates further study into how to obtain high-

quality solutions quickly for these large-scale problems. Future research may seek to improve

upon our approach by drawing from the literature on stochastic programs with a discrete

second stage.

Given that routine dredging jobs are completed on a multi-year schedule, a dynamic

(multi-year) extension of this problem is also worthy of future research; however, the chal-

lenges (both in terms of acquiring the necessary data and solving the resulting optimization

problem) become extreme in this case.
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