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Executive Summary 

The state-of-the-practice for most municipal traffic agencies seeking to identify high-risk road segments 

has been to use prior crash history. While historic traffic crash data is recognized to be valuable in 

improving roadway safety, it relies on prior observation rather than future crash likelihood.  Recently, 

however, researchers are developing predictive crash methods based on “abnormal driving events.”  

These include abrupt and atypical vehicle movements thought to be indicative of crash avoidance 

maneuvers and/or near-crashes. Because these types of near-crash events occur far more frequent than 

actual crashes, it is hypothesized that they can be used as an indicator of high-risk locations and, even 

more valuably, to identify where crashes are likely to occur in the future. This paper describes the 

results of research that used naturalistic driving data collected from global positioning system (GPS) 

sensors to locate high concentrations of abrupt and atypical vehicle movements in Baton Rouge, 

Louisiana based on vehicle acceleration and vehicle rate of change of acceleration (jerk). Statistical 

analyses revealed that clusters of high magnitude jerk events while decelerating were significantly 

correlated to long-term crash rates at these same locations. These significant and consistent 

relationships between jerks and crashes suggest that these events can be used as surrogate measures of 

safety and as a way of predicting safety problems before even a single crash has occurred. 

  



1. Introduction 

The state-of-the-practice for most transportation agencies in identifying high-risk road segments has 

been the use of long-term historic traffic crash data. Traffic engineers analyze this data to quantify crash 

frequency, rate, severity, and economic loss; and locations with higher levels of these metrics are 

typically classified to be “less safe” compared to other locations.  And since crashes are used as the 

primary measure to assess the need for and potential benefit of highway safety investments, these 

“less-safe” locations usually receive more attention in the form of funding for safety improvements 

(Hauer, 1996; Tarko and Kanodia, 2004; Persaud et al., 1999).  

While analysis of historic traffic crash data has proven to be a valuable tool in improving 

roadway safety, it is a retroactive measure.  In effect, it can only be used after damage, injury, and loss 

of life have occurred; in some cases for many years.  To address this problem, recent research has 

sought to develop measures to proactively identify high-risk roadway segments (Gettman et al., 2008; 

Dixit et al., 2011; AASTO, 2010). If created, these techniques could be used to identify safety problem 

before any crashes, injuries or fatalities, have occurred.   

These new avenues of research have focused on quantifying parameters that are correlated 

with roadway safety, including measures such as conflicts and time-to-collision.  Such variables, referred 

to as “surrogate safety measures,” are observable, non-crash, events that have a relationship to crashes 

(Tarko et al., 2009). The advantages of surrogate safety measures are that they can be observed long 

before crashes have occurred and they often happen far more frequently than actual crashes; in some 

cases, 10 and 15 times more frequently (Guo et al. 2010), enabling more powerful statistical analyses to 

be applied. Surrogate safety measures developed from the analysis of human factors identify the 

characteristics of “risky” or “unsafe “drivers. These are drivers that self-report being involved in an 

unusually high number of crashes.  Bagdadi and Varhelyi (2011) found that unsafe drivers experienced 

an unusually large number of high magnitude negative jerks. The jerk characteristic of a drive is the rate 



of change of acceleration and is measured in feet per second cubed (ft/s³). Drivers who showed a 

pattern of high negative jerk values were also statistically more likely to have a higher number of traffic 

crashes.  

This method of identifying high-risk road users by analyzing their jerk patterns has promise in 

the field of human factors and insurance pricing. However, previous research has not yet been able to 

leverage this emerging avenue of safety research into a method to identify unsafe roadway segments. In 

this research, it is hypothesized that locating high concentrations of abnormal negative jerk values (i.e., 

jerk-clusters) would enable high-risk locations to be identified in advance and potentially with greater 

accuracy. By examining jerk-clusters instead of individual drivers, this analysis can also be used to 

illustrate a general trend of safety for a roadway segment.  

This paper describes the results of recent and ongoing research that uses naturalistic driving 

data collected with global positioning system (GPS) sensors. The research applies geographic 

information systems (GIS) analysis and other quantitative methods to GPS data to use jerks-clusters for 

future crash prediction. From this dataset, jerks were geo-located to a roadway network and graphed in 

combination with historic traffic crashes. This combined dataset was analyzed to determine if a 

statistical relationship existed between jerk-clusters and traffic crashes. Such information would, in 

effect, give safety analysts a “crystal ball” to see into the future and predict locations that are likely to 

have a higher numbers of crashes in the future.  With this knowledge, safety improvements could be 

planned and implemented to prevent damage, injury, and death well before any significant number of 

crashes had even occurred.  

1.1 Literature Review 

Due to the rare occurrence of traffic crashes and deficiency of adequate data, transportation 

professionals have sought to develop surrogate safety measures to better understand, analysis, and 

prevent vehicle crashes. Various techniques have been used to develop surrogate safety measure but 



the most prominent has involved the use of traffic conflicts (Chin et al., 1992; Chin and Quek, 1997; 

Glauz and Migletz, 1980; Parker and Zegeer, 1989) and time-to-crash (Hyden, 1987; Hyden, 1996; 

Svensson, 1998; Svensson and Hyden, 2006). These studies share the common goal of identifying where 

or when traffic crashes may occur and the factors that increase the likelihood of occurrence. 

The Highway Safety Manual (HSM) is a reference tool for traffic professionals to facilitate 

improved decision-making based on safety performance. The HSM allows for a quantitative analysis of 

safety for highway planning, programing, project development, construction, operations, and 

maintenance. The goal of the HSM is assemble the most current methodologies and information for 

measuring, estimating, and evaluating roadway safety in terms of crash frequency and severity. 

Published in 2010, the HSM includes Safety Performance Functions (SPF) that permit expected future 

numbers of crashes to be forecast on specific segments of roadway given a particular set of traffic, 

design, and operational conditions.   

The advent of geographic information systems (GIS) and global position systems (GPS) has 

allowed driving data to be collected and processed with ever increasing levels of detail and accuracy. 

This technology has been applied extensively in the traffic engineering field in areas ranging from fleet 

management and dashboard navigation to travel time estimation and traffic simulation. It has been 

suggested that this technology has potentially significant applications in the area of quantifying traffic 

safety (Pande et al., 2014) and has the potential to replace traditional methods of measuring safety 

(e.g., Hauer, 1996). Studies that have adapted in-vehicle GIS and GPS technology to analyze driving 

behavior are classified as “naturalistic driving studies” because they use driver information collected 

during their natural driving routines (Dingus et al., 2006). Naturalistic driving data has many applications 

but traffic safety has received the most attention in recent years. The “100-Car Study” used 100 vehicles 

instrumented with video recording devices and advanced GPS sensors to collect naturalistic driving 

behavior from 241 drivers. The advanced instrumentation was used to document 8,295 critical incidents 



(Dinjus et al., 2006). The 100-car study led to significant advances towards crash-avoidance systems 

used in modern vehicles (McLaughlin et al., 2008).  

Bagdadi and Varhelyi (2011) used GPS data to analyze braking characteristics and jerks (the rate 

of change of acceleration) from 166 private vehicles. Using a critical jerk threshold of -32.4 ft/ s³ (-9.9 

m/s³), the research found drivers that showed a pattern of jerk values above this threshold were more 

likely to have history of self-reported crashes. More recent studies have used critical jerk values to 

differentiate between controlled powerful braking and “critical braking” for crash avoidance in 

naturalistic driving data (Bagdadi, 2013; Bagdadi and Varhelyi, 2013). These previous works have 

examined individual drivers and their jerk characteristics to identify unsafe driving behavior. However, 

an analysis of jerks has not yet been applied to multiple drivers over same road to examine the 

relationship jerk-clusters and roadway safety.  

  



2. METHODOLOGY 

This research estimates roadway safety by analyzing clusters of high magnitude negative jerks from 

multiple driver observations. The research methodology consisted for five analytical tasks. The first task 

was the collection and processing naturalistic driving data using advanced GPS devices. The second task 

used linear referencing to match the data collection points to roadway maps. This task also included 

referencing the historic vehicle crash data to the same map. The third task was to quantify the jerks of 

the research participants. The fourth task was a sensitivity analysis to identify the optimum roadway 

segment length and critical jerk-value threshold that best match the historic traffic crash data. The fifth 

and final task was to develop a crash-frequency model, establishing a quantitative relationship between 

jerk-clusters and historic crashes. Each of these tasks and their results are described in the following 

sections of this paper. 

2.1 Data Collection and Processing  

The naturalistic driving data used in this research was collected from 31 staff members and their 

household members at Louisiana State University. The goal of the participant selection was to recruit 

drivers with similar driving patterns. This was necessary to ensure that the participants in the study 

would consistently travel over the same routes to develop jerk-clusters. Participants were selected using 

a questionnaire that screened drivers based on personal characteristics and driving patterns. 

Participants were then segregated based on age, commuting route, and driving frequency. To maintain 

confidentiality, a unique random identifier was assigned to each participant that was later assigned to 

the GPS data collection unit. All participants were between the ages of 20 and 65 and included 12 

female and 19 male drivers. The data collection period spanned from July 2012 to January 2013 with 

each driver contributing around 10 days of data.  

The GPS data was collected by a GPS Data Logger V3.15 (data logger), able to record daily travel 

patterns for up to two weeks. The data loggers were charged by a 3.7 volt rechargeable battery and 



recorded data in a comma-separated format, adhering to the National Marine Electronics Association 

standards. The data logger recorded position information in World Geodetic System 84 standard, 

collecting latitude, longitude, altitude, heading, speed, number of satellites utilized, position dilution of 

precision, horizontal dilution of precision, and vertical dilution of precision as well as universal time code 

and date. Readings from the device were recorded at a rate of three hertz (i.e., three readings per 

second) and was programmed with a “sleep” mode which would stop data recording if the position 

information did not change after 300 seconds.  This was done primarily to preserve battery life. 

The data loggers were housed in a waterproof, crush-proof, airtight case to protect the unit and 

hard drive from damage. Drivers were asked to place the unit in their center console or glove box. 

Extensive testing prior to the data collection period showed that neither location affected the accuracy 

of the data obtained from the device. Participants were also asked to refrain from allowing anyone else 

to use their vehicle during the 2-week experiment period. 

The GPS data collected from each participant was processed by combining multiple data files 

into a single file, labeled with each participant’s unique identifier. This data file was then linked to the 

initial questionnaire filled out by the participant. The dataset was divided into individual trips which 

were delineated by 30-minute intervals of inactivity. These were then assigned a trip number. The trip 

information was imported into ESRI ArcMap and plotted over a base-map of the Baton Rouge, Louisiana 

road network file.  The data was then visually inspected to identify the streets the participants were 

driving on and for errors. 

Three error types were found in the data: a) GPS noise at intersections, b) GPS wandering and c) 

gaps in the GPS data. These errors were consistent with those observed in the San Louis Obispo, CA 

(Pande et al., 2014). GPS noise was the most common of the three errors. It occurred when the GPS 

position changed but speed and heading did not match. This error was typically associated with vehicles 

being stopped or moving at slow speeds and was characterized by a “cluster” of data points observed in 



the vicinity of the stopping location. GPS wandering occurred when the GPS data points did not 

correspond to the actual vehicle location. This phenomenon was characterized by data points appearing 

in areas where no road exists and appeared to be random in nature. The third error, the presence of 

gaps in the data, was identified by segments of roadways, which were void of data collection points. This 

error was likely caused by a temporary loss in GPS satellite availability resulting from impedance or a 

communication error.  

2.2 GIS Linear Referencing  

Linear referencing was used to link the data collection points to the road network of Baton Rouge, LA.  

Linear referencing links geographic locations (x, y) to a measured linear feature. The road network used 

for this study was provided by the Louisiana Department of Transportation and Development (LDOTD, 

2014). The roadways evaluated in this study were: (1) a 7.5 mile long stretch of LA 42, known locally as 

Burbank Drive, a four-lane divided highway with posted speeds varying from 45 to 55 mph. (2)  a 5.15 

mile long stretch of LA 1248, known as Bluebonnet, a four lane divided highway with posted speeds 

varying from 30 to 45 mph. 

By linearly referencing each data point to the road network, linear distances between each point 

could be calculated. This linear referencing procedure was repeated for each individual participant. Data 

points were linearly referenced to the nearest road within a radius of 300 ft. This large radius value was 

selected to bypass any possible GPS noise or wandering errors. However, this required the GPS data 

points to be further filtered to remove any erroneous location information that may have resulted from 

referencing the data to an incorrect road. Furthermore, data points with incorrect heading information 

as well as data points that reported communication with fewer than five satellites were removed from 

consideration. The removed data constituted about one percent of the overall data collected. This 

filtering process ensured that only accurate data with reliable position information was included in the 

analysis.     



To identify the roads segments of LA 42 and LA 1248 which were deemed “safe” or “hazardous,” 

5-year vehicle crash data, from 2009 to 2013, were used. This is a commonly accepted measure for 

determining relative safety (Hauer, 1996). The historic crash data were also linearly referenced to the 

same road network as the GPS data. The crash rate was calculated for each segment in accordance with 

the United States Department of Transportation (USDOT) defined method, Equation 3 (FHWA, 2014). 

This was used to normalize the total number of crashes by the amount of ADT, a measure of exposure. 

 

𝑅 =
𝐶 × 100,000,000
𝑉 × 365 × 𝑁 × 𝐿

 

 

Where: 

𝑅: Road segment crash rate expressed for 100 million vehicle-miles traveled  

𝐶: Total number of crash on the roadway segment  

𝑉: Traffic volume (ADT) 

𝑁: Number of years of crash data 

𝐿: Length of the road segment 

 

2.3 Jerk Analysis 

The road network was partitioned into equal length analysis segments. The segments varied with regard 

to the curvature of the road and average daily traffic (ADT); these two variables were added to the 

dataset for analysis. Calculated from the driving data was each participants acceleration(𝑎) and jerks (𝑗) 

between consecutive data point. The equation for acceleration (𝑎) and jerk (𝑗) are given in equation 2 

and equation 3, respectively. 

 

 

(1) 



 

𝑎 =
𝑑𝑑
𝑑𝑑

 

 

𝑗 =
𝑑𝑑
𝑑𝑑

 

Where: 

𝑎: Acceleration (ft/s²) 

𝑑𝑑: Change in velocity between successive observations (ft/s)  

𝑗: Jerks (ft/s³) 

𝑑𝑑: Change in acceleration between successive observations (ft/s²) 

 

A histogram of acceleration (𝑎) and jerk (𝑗) was analyzed for quarter-mile segment lengths to 

understand the distribution of these variables. This analysis indicated that the jerk variable (𝑗) warranted 

further evaluation. This was logical since low magnitude negative jerk values are likely associated with 

gradual braking maneuvers, as opposed to high magnitude negative jerk values, indicating sudden 

braking. As seen in Pande et al. (2014), drivers traveling on freeway segments characterized by high 

long-term crash rates had to make more sudden braking maneuvers resulting in an above average rate 

of high jerk values on those segments. 

2.4 Sensitivity Analysis  

The jerk (𝑗) value was a continuous variable without an intuitive method to identify which threshold 

value of jerk distinguished between gradual braking maneuvers and sudden braking maneuvers. Bagdadi 

and Varhelyi (2011) used a constant jerk threshold of -32.4 ft/s³ (-9.9 m/s³). The threshold value used for 

this research was determined using a data driven sensitivity analysis. Twenty-one jerk value thresholds 

were evaluated in the sensitivity analysis from -0.5 (ft/s³) to -10.5 (ft/s³) at an increment of 0.5 (ft/s³). A 

(2) 

(3) 



jerk event was defined as any negative jerk value with a magnitude that exceeded a predefined 

threshold value. The number of jerk events exceeding the threshold value within a road segment was 

counted. The count for each segment was normalized by the total number of data points observed in 

that segment to yield a jerk-rate or percentage of the high jerks events, observed in each segment. The 

jerk-rate was then compared to the crash rate R, for each segment using a Pearson Correlation analysis. 

Also because it was unknown how the segment length would affect the analysis, three different 

segment lengths were selected: eighth-mile (0.125), quarter-mile (0.25), and half-mile (0.5). The results 

of the sensitivity analysis are shown in Figure 1. 

 

 

Figure 1: Sensitivity Analysis Results 

The figure indicates that a jerk threshold value of -3 ft/s³ resulted in the highest Pearson 

Correlation Coefficient for all segment lengths. Compared to other studies, this jerk threshold value is 

much smaller and is likely too low to be indicative of an evasive driving maneuver. However, since this 

research examines combined jerk-clusters from multiple drivers, the value may indicate a general trend 
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of atypical braking behavior (not necessarily evasive). On the overhand, the benefit of a reduced 

threshold value increases the number of jerk events, enabling high-risk segments to be identified earlier 

and with greater statistical certitude. 

Additionally, the results of the sensitivity analysis indicated that the quarter-mile segment 

length (highest correlation coefficient) was the best choice. This suggested that the smaller, more 

homogenous eighth-mile segments may have been smaller than the precision of the crash location data, 

resulting in crashes being incorrectly assigned to the adjacent segments by linear referencing. The half-

mile segments appeared to be too large and insensitive to generate the high Pearson Coefficients seen 

in the quarter-mile segments.   

To illustrate the strength of the correlation, Figure 2 and 3 present heat maps of the jerk-rate 

percentage (with the threshold value is set to -3 ft/s³) and historic crash rates. The images show the 

strength of the relationship between high relative jerk-rates and crash-rates. 

 

 

Figure 2: Quarter-Mile Segments with Crash Locations on LA 42 

 



 

Figure 3: Quarter-Mile Segments with Crash Locations on LA 1248 

  



3. CRASH-FREQUENCY MODELING RESULTS 

Long-term crash frequency was estimated for each quarter-mile segment using a negative binomial 

model. In practice, negative binomial models are often used in crash frequency analysis (Shankar et al., 

1995; Abdel-Aty and Radwan, 2000).Two independent models were estimated for LA 42 and LA 1248. 

Results are shown in Table 1 and 2 and include ADT, curvature and jerk-rate. The jerk-rate was the only 

variable to be significantly related to the long-term crash-frequency in both models. The model 

developed for LA 1248 also showed a correlation between ADT and crash-frequency. The results of the 

analysis suggest that the crash-frequency experienced on LA 42 and LA 1248 in Baton Rouge, LA are 

significantly related to high magnitude negative jerk-clusters than variables traditionally used in crash-

frequency estimation. 

Table 1: Crash Frequency Estimation Model of LA 42 

Parameter DF Coef. S.E. 95% C.L. Chi-Square Pr > ChiSq 

Intercept 1 0.6879 1.69 -2.624 4 0.17 0.684 

Jerk-Rate 1 0.5068 0.099 0.3119 0.702 25.99 <.0001 

ADT 1 0.0001 1E-04 -1E-04 2E-04 0.61 0.4336 

Curve 1 -0.506 0.301 -1.096 0.084 2.82 0.093 

Dispersion 1 0.6441 0.162 0.394 1.053     

 

 

 

 

 

 



Table 2: Crash Frequency Estimation Model of LA 1248  

Parameter DF Coef. S.E. 95% C.L. Chi-Square Pr > ChiSq 

Intercept 1 -0.022 1.627 -3.211 3.167 0 0.9892 

Jerk-Rate 1 0.1374 0.062 0.0165 0.258 4.96 0.0259 

ADT 1 0.0001 0 0 2E-04 4.28 0.0386 

Curve 1 0.1361 0.238 -0.33 0.602 0.33 0.5672 

Dispersion 1 0.6265 0.186 0.3497 1.122     

 

CONCLUSIONS 

This research has demonstrated a relationship between the location of jerk-cluster and vehicle crashes 

on two major arterials. While more research is required to generalize the relationship to all cases, 

findings suggest that a clustering of high magnitude negative jerks may precede vehicle crashes. 

Compared to traditional measures used to estimate crash frequency (ADT and the presence of 

geometric curves), jerk-clusters provided a much stronger indicator of safety for the study segments. 

This finding may allow analysis to identify crash prone locations in a proactive manner before the crash 

data (along with the losses and suffering that accompanies these crashes) is allowed to accumulate.  

A secondary goal of this research was to examine the effects of segment length on the 

relationship between jerk events and crash rates. Segments that were too short (less than or equal to 

1/8 mile) or too larger (greater than or equal to 1/2 mile) reduced the ability to correlate jerks and 

crashes. The results suggest there is an ideal segment length for analysis that yields the highest 

correlation. Future research should examine this finding and explore spatial analysis tools capable of 

identify the optimal segment length, as this may lead to more accurate crash prediction models. 

Information technology advances are opening up new opportunities for traffic agencies to be 

able to identify locations with relatively high jerk events. With the number of GPS enabled devices, such 



as “smartphones” and “tablets” increasing, future research may have the ability to access this 

information to analyze jerk events through “crowd sourcing”.  This would result in identifying unsafe 

roadways significantly earlier because traffic engineers would not have to wait for sufficient crash data 

to accumulate. Identification of unsafe roadways prior to any crashes occurring would be a lifesaving 

measure. The results of this research could have a profound impact on the way highway safety is 

quantified and capital investment on roadway projects is allocated in the not-too-distant future. 
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