Project Title: Innovative Bio-Mediated Particulate Materials for Sustainable Maritime Transportation Infrastructure

Project Abstract (Brief Description): Innovative bio-mediated particulate materials may provide great and previously unexplored opportunities as cost-effective and sustainable construction materials for maritime transportation infrastructure. To address this need, and building upon its experience and expertise in the area, this project proposes multidisciplinary effort to evaluate the mechanical properties of bio-mediated sandy soils attributable to the formation of microbially-induced calcite precipitation. The mechanical properties of sandy soils in the coastal area often do not satisfy construction expectations for maritime transportation infrastructure. The salty, loose sand makes it difficult for quick construction of port, building and roadway. Sometimes the weakness and unpredictability of soil properties can lead to unexpected collapse. Biological techniques, such as microbially-induced calcite precipitation (MICP), can provide unexplored opportunities for cost-effective, in situ improvement of the engineering properties of sandy soil. As one of the natural processes in mineral precipitation, MICP by urea hydrolysis can result in relatively insoluble compounds contributing to soil cementation. Previous research and testing has focused almost exclusively on the standard Ottawa sands due to its uniform pore size. As a result, little is known on the more problematic cases of sandy soils in the coastal area for the bio-mediated soil improvement. The much finer structure and salty condition are two unknown factors for the MICP.

Describe Implementation of Research Outcomes (or why not implemented) - The primary objective of the proposed research project is to develop bio-mediated particulate materials to enhance the resilience and protection of maritime transportation infrastructure elements. The advanced materials are based on MICP for the sandy soils in the coastal area. We’ve completed the experimental study of fine grained soils (silt and clay) on the effect of microbial improved sandy soil.

Impacts/Benefits of Implementation (actual, not anticipated)
To be determined upon conclusion of the project:

Web Links:

Budget (Funding) Amounts & Source(s) (US DOT +Match(s) =Total Costs): 57.5k USDOT + 28.75k matching = 86.25k total

Project Start and End Dates: 11/01/2015 – 10/31/2016

Principal Investigator(s) and Contact Information: Dr. Lin Li feng.wang@jsums.edu
1400 Lynch St.
Jackson, Mississippi 39217
Phone: 601-979-1094

Principal Investigator Institution (University): Jackson State University