
MARITIME TRANSPORTATION RESEARCH AND EDUCATION CENTER 
TIER 1 UNIVERSITY TRANSPORTATION CENTER 

U.S. DEPARTMENT OF TRANSPORTATION 

 
 
 

 
 
 
 

Predicting Soil Type from Non-destructive Geophysical Data using Bayesian Statistical Methods 
Project start and end dates: January 1, 2018 – August 15, 2018 

 
Michelle Bernhardt-Barry, Ph.D., P.E. 

University of Arkansas 
4190 Bell Engineering Center 

Fayetteville, AR  72701 
479-575-6027 

 
Jyotishka Datta, Ph.D. 

Clinton Wood, Ph.D., P.E. 
Josh Price 

 
September 14, 2018 

 
 

FINAL RESEARCH REPORT 
Prepared for: 

Maritime Transportation Research and Education Center 
 
 
 

University of Arkansas 
4190 Bell Engineering Center 

Fayetteville, AR  72701 
479-575-6021 



ACKNOWLEDGEMENT 
This material is based upon work supported by the U.S. Department of 
Transportation under Grant Award Number DTRT13-G-UTC50.  The work was 
conducted through the Maritime Transportation Research and Education Center 
at the University of Arkansas.  

 

DISCLAIMER 
The contents of this report reflect the views of the authors, who are responsible 
for the facts and the accuracy of the information presented herein. This document 
is disseminated under the sponsorship of the U.S. Department of Transportation’s 
University Transportation Centers Program, in the interest of information 
exchange. The U.S. Government assumes no liability for the contents or use 
thereof. 
 
 

 

 

 

 

 

 

 

 

 

 

 



1. Project Description 

Field-based electrical resistivity methods are gaining popularity among geotechnical engineers as 
an efficient and non-destructive method to collect continuous subsurface data. However, 
predicting soil-type based on such measurements remains a challenging problem.  A more 
accurate and interpretable predictor of soil type is critically needed in order to assess the many 
miles of undocumented levees scattered across the United States.  The methods assessed herein 
would allow this information to be gathered non-destructively, saving both time and money. 

In a previous MarTREC project, a series of geophysical field trials were conducted to determine 
the most accurate and efficient methods and the best parameters for detecting various features 
or defects within levees. Of the available techniques, electrical resistivity measurements and 
surface wave methods were determined to be the most advantageous in terms of capturing 
features of interest. While these are the best indicators of a subsurface condition, neither 
method was able to provide a confident prediction of soil type when used alone.  For resistivity 
in particular, a wide range of predictor values were associated to a given soil type depending on 
the moisture and density conditions, leading to poor uncertainty quantification.  A laboratory 
study was also conducted to better understand the influence that geotechnical parameters have 
on a soil’s measured electrical resistivity; however, a robust statistical analysis of the data was 
not carried out.  

The goal of this project was to predict soil-type from field geophysical surveys based on the least 
amount of predictors possible. Ideally, the predictive models would be able to identify soil type 
based on resistivity or shear wave characteristics alone because these two predictors can be 
measured relatively rapidly and most importantly, they can be obtained non-destructively. 
Statistical analysis of the laboratory benchmark data was carried out and three classification 
procedures were compared on a wide range of soil types.  The ability of each method to predict 
soil type for a given number of predictors was assessed.  The resulting accuracy was quantified 
based on the number of predictors used or provided in the data-set.  The classification accuracy 
of the methods was also assessed using a supervised learning scheme to avoid possible 
overfitting. The best performing procedure was then applied to a field data-set and the 
performance along with the predictive power of the variables was assessed.  

 

2. Methodological Approach 

2.1 Background 
At the Mel Price portion of the Wood River Levee System, a large amount of geotechnical data 
was provided by the U.S. Army Corps of Engineers (USACE) and consisted of soil type with depth, 
water content, behavioral classification, and standard penetration test (SPT) blow counts.  While 
this data was used as the “ground truthing” in a previous study, it was used as verification data 
for the training and test data sets for this study.  Measures of electrical resistivity (ER) and shear 
wave velocity (Vs) at a number of locations across the site were made and were combined with 
the known soil type and soil conditions to create a data-set which could be used to train and test 
the developed statistical models.   



ER is an intrinsic property defined as a measure of how strongly a given material opposes the 
flow of electrical current. ER measurements require at least four-electrodes, two current 
electrodes and two voltage potential electrodes. Multiple measurements are taken at different 
electrode spacings in field resistivity surveys and a pseudosection (i.e., map of apparent resistivity 
measurements) is obtained. The measured resistivity represents the resistivity that would have 
been measured for a uniform subsurface (Everett 2013), and inversion and forward modeling 
processes are required to obtain the true resistivity distribution for the soil profile (Loke 1997).  
ER depends on many factors such as the nature and arrangement of solids, shape and size of 
solids, thickness of diffuse double layer (DDL), ion concentration in pore water and DDL, cation 
exchange capacity (CEC), water content, pore fluid composition, temperature and even 
anisotropy due to particle alignment (Parkhomenko 1967; Abu-Hassanein, Benson, and Blotz 
1996; Samouelian et al. 2005, Fukue et al. 1999, Friedman 2005). These factors may interact 
making it difficult or even impossible to isolate their effects in data interpretation.  

Seismic geophysical methods (known as stress wave methods) use body or surface stress waves 
to estimate the subsurface layering and stiffness of earth materials. Stress wave methods result 
in either compression wave (P-wave, Vp) or shear wave (S-wave, Vs) velocity with depth along a 
line, providing a 2D profile of Vp or Vs.  Vp and Vs are fundamental properties of soil and rock and 
relate directly to the stiffness of the material for a given density. Vp can vary greatly depending 
on the saturation of a soil while Vs is not strong influenced by the degree of saturation. Therefore, 
Vs, was chosen as the most appropriate parameter in this study.  Vs depends on the type, density, 
and stiffness of a given soil and it can be correlated to strength values such as undrained shear 
strength, SPT blow count, friction angle, or other geotechnical properties and parameters. 

Because of the large number of predictors that affect the resistivity value, a laboratory study was 
carried out which considered the effects of various geotechnical parameters on different 
benchmark soil types. The details of the full study can be found in Mofarraj Kouchaki et al. (2018); 
however, some discussion is given here to provide the necessary background for the statistical 
analysis.   

Nine different benchmark soils (Table 1) were made by mixing different portions of commercially 
available sand, Kaolin clay, Bentonite clay, and red art clay.  A summary of the properties of these 
soils, as well as the range of densities and water contents tested are provided in Table 1.  The 
effects of water quality, water content, degree of saturation, density, and temperature on the 
measured electrical resistivity of the soils were investigated. Each soil was tested in a laboratory 
resistivity device and the results were plotted to determine trends in the various properties and 
parameters.  Bulk density and degree of saturation were found to be most effective in the 
identification of soil type.  Results indicated that resistivity values reach a lower threshold at 
around 60% saturation and density and other parameters become less influential as the 
saturation increases above this threshold.  Temperature was found to greatly influence the 
resistivity measurements and should be monitored and corrected for when laboratory test 
results are compared to field data.   

 

 



Table 1. Material description, index properties, and density and moisture conditions for the soils tested. 

 
 

Composition (% mass) 
 

Index Properties Testing Range 

Soil 

Type 

 

Sand 
Kaolin  

Clay 
Bentonite 

Red Art 

Clay 

 
LL 

(%) 

PL 

(%) 

PI 

(%) 
Gs 

D90 

(μm) 

D50 

(μm) 

D10 

(μm) 

 
Bulk 

Density 

(Mg/m3)  

w (%) 

SP  100 0 0 0  - - - 2.67 850 440 240  1.63-2.00 2-20 

SP-SM  90 10 0 0  - - - 2.66 800 380 100  1.12-2.11 4-16 

SP-SC  90 8.5 1.5 0  - - - 2.64 780 375 80  0.98-2.10 3-12 

SC  70 25.5 4.5 0  28 15 13 2.70 730 320 -  1.09-2.15 4-18 

SM  70 30 0 0  26 15 11 2.64 750 330 -  1.03-2.11 10-15 

CL-1  0 0 0 100  38 19 19 2.77 25.4 7.8 0.49  1.13-2.10 2-39 

CH  0 85 15 0  72 33 39 2.62 6.6 0.4 -  1.15-1.82 10-60 

CL-2  30 70 0 0  48 24 24 2.60 550 1.8 -  1.06-1.94 14-30 

MH  0 100 0 0  62 32 30 2.61 5.9 0.4 -  1.06-1.60 6-70 

LL = liquid limit   Gs = specific gravity 

PL = plastic limit   D# = diameter of particle by which # % is finer 

PI = plasticity index  w = gravimetric water content in percent 

 

2.2 Statistical Approach 
Statistical methods were used to further analyze the parameters affecting ER in the laboratory 
study and determine the most appropriate predictors for determining soil type.  In this section, 
we first compare the performances of three different classification procedures: (1) Linear 
Discriminant Analysis (LDA), (2) Logistic regression, and (3) Decision tree on the laboratory-based 
soil data-set, with more predictors, as well as more labels for the categorical response (a higher 
resolution of soil type classification). This is done by comparing the misclassification errors for 
the different classifiers in a supervised learning set-up.  
 
Laboratory Resistivity Statistical Analysis 
As discussed before, the goal was to predict soil-type based on resistivity characteristics, 
collected for the following predictors.  Table 2 lists the predictors and their descriptions 
considered in the laboratory data study.  Clearly, some of the predictors should exhibit a strong 
dependence, and this should be incorporated into the classification method built on these 
variables.  
 
Soil type was the target response variable with nine different categories defined by the main 
group classifications defined in the Unified Soil Classification System (USCS).  It is noted that a 
low plasticity silt (ML) was not used because a non-processed benchmark soil of this classification 
was not available.  The number of samples for each category is given in Table 3.  As discussed 
below through the analysis, some of these categories have overlapping class boundaries in terms 
of resistivity properties and as a result, there would be a higher chance of misclassification for 
them. 



Table 2. Description of predictor variables for laboratory soil resistivity data analysis. 

Predictor Variable Description 

Dry density Density of soil WITHOUT water (Mass dry soil/total volume) 

Wet density Density of soil WITH water (Total mass/total volume) 

Volumetric water content The volume of water per a given total volume of soil 

Saturation 
Portion of void space filled with water (Volume of water/volume of void 

space) 

Resistivity Measure of how much the soil resists the flow of electrical current 

Gravimetric water content 100 ×
𝑀𝑊

𝑀𝑆
 , 𝑀𝑤 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑠𝑜𝑖𝑙, 𝑀𝑠 = 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙. 

                                                 

Table 3. Soil types considered and number of samples for each. Soil types are labeled using their USCS 
group classification. 

Soil Type  CH CL-1 CL-2 MH SC SM SP SP-SC SP-SM Grand Total 

Count 17 17 10 31 13 8 20 12 13 141 

 

For this data-set, we applied three different classification tools: 

1. Linear Discriminant Analysis (Fisher’s LDA). Linear Discriminant Analysis is one of the 
earliest classification methods that calculates the conditional probabilities 𝑃(𝑌 = 𝑘 ∣ 𝑋) for 
each category k based on Bayes’ rule (James et al., 2013).  The LDA assumes linear 
classification boundaries between the different classes and makes Gaussianity assumptions 
on 𝑋.  

 

2. Logistic Regression Models:  The logistic regression models a sigmoidal function of the class 
probabilities as a linear model in Generalized Linear Model framework (Hosmer et al., 2013). 
The logistic regression / classification model makes weaker assumptions on the predictor 
variables and is a powerful and popular method because of the interpretability of 
coefficients through their P-values. This makes model selection feasible and principled for 
the logistic regression. For a multinomial classification problem, the model can be written 
as follows:  

𝑙𝑜𝑔 (
𝑃( 𝑌 = 𝑘 ∣∣ 𝑋1, … , 𝑋𝑝 )

𝑃(𝑌 = 𝑘0|𝑋1, … , 𝑋𝑝)
) =  β0 +  𝛽1𝑋1 + ⋯ +  𝛽𝑝𝑋𝑝 + 𝜖;   𝑘 = 1, 2, … , 𝐾.   

 

Here 𝑌 =  𝑘0 is the baseline category. For a multi-class classification problem, we need to 
fix a baseline and model the logit of the class-probabilities with respect to the baseline.  

 

3. Decision Tree: Decision-tree based methods on the other hand, try to find the best partition 
of the predictor space to classify data (James et al., 2013). Decision-trees do not assume a 



model for the class-probabilities like logistic / LDA which limits their interpretability, but 
they gain when the true classification boundaries are not linear.  

 

The data-set was split into training data and test data for assessing the classification accuracy of 
the different methods using a supervised learning scheme. For each soil type, 25% of the samples 
were designated as test data points, leaving the remaining 75% as the training data. The three 
classification tools were then analyzed to determine the best performing in terms of prediction 
accuracy for soil type.   

 

Field Measurement Statistical Analysis  

Once the best performing procedure was determined for the laboratory data-set, it was applied 

to the field data collected at the Mel Price reach of the Wood River Levee System.  Only the 

‘landside’ (i.e. dry side) of the levee system was considered here.  The field data had fewer soil 

classification categories compared to the laboratory data (only ‘CL’ and ‘SP’) with four continuous 

predictors for resistivity. These predictors are recorded as follows:  

1. R: Electrical Resistivity Value; ‘raw’ is the raw value measured and ‘surfer’ is the actual 

resistivity value determined using the surfer software. Both represent a 10 m average in 

the horizontal direction (x direction).  We denote these columns by Rohm and Rsurf, 

respectively. 

2. Velocity: Shear Wave Velocity, Vs. 

3. SPT: Standard Penetration Test (SPT) blow count (N value). 

We applied the logistic regression for classifying the soil types in the field study, as it showed the 

best classification performance under a more challenging classification task with more soil type 

categories for the laboratory study. The model is given by: 

log(
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1 × 𝑅ohm + 𝛽2 × 𝑅surf + 𝛽3 × Velocity + 𝛽4 × SPT + 𝜖,  𝜖 ∼ 𝑁(0, 𝜎2) 

As before, we used a supervised learning approach for validating our model, as well as for 

preventing overfitting. For testing the predictive accuracy of the model, we divided the entire 

data into two groups with 80% training and 20% test data: which leaves 196 training data points 

and 50 test data points.  We then fit the model on the training data and predicted soil type for 

the test data set. Using a single split of training and test data to fit and evaluate a model is called 

the “validation set” approach for supervised learning. To make sure that the classification 

accuracy is not an artifact of a particular split of the training and test data, we calculated the 

misclassification accuracy using the validation set approach on a few simulated data sets and 

reported the distribution. For this task, we had more sample points per category of soil compared 

to the laboratory resistivity study which helps in a better estimation and prediction by increasing 

the statistical power. 



3. Results/Findings 

3.1 Descriptive Statistics 

Figure 1 presents the scatterplot matrix for the resistivity data to show their marginal 

distributions as well as pairwise dependence. Clearly some of the predictors have strong 

dependence and therefore, a variable selection step was performed to avoid multicollinearity 

issues.  The extent of the pairwise dependence is shown in Figure 2.  Some of the predictors have 

correlation almost near 1, potentially leading to poor model fit. 

 

 

Figure 1. Scatterplot matrix for soil resistivity data. 



 

3.2 Supervised Learning: Classification for Laboratory Resistivity Data 

The performance of each of the methods applied here is summarized in the next subsections, by 

reporting their overall classification errors, as well as the classification errors for each soil 

subtypes, via a “confusion matrix”, where one tabulates the ‘true’ soil-type versus the ‘predicted’ 

soil types. It should also be noted that these misclassification rates can be compared with a 

benchmark that randomly assigns each soil sample one of the 9 labels, and results in a true 

classification rate of only 11.11% (prob = 1/9).  

Linear Discriminant Analysis (LDA) 

The performance for two different sets of predictors is presented: one with resistivity, dry 

density, and saturation and the other with resistivity as the only predictor. This shows the relative 

loss of accuracy by using one predictor and helps the investigator decide which variables to 

include in a study. As discussed previously, resistivity can be determined non-destructively and it 

would be advantageous to quantify the accuracy obtained using only this predictor.  Vs was not 

considered in the laboratory study because benchmark specimens were not representative of 

the field values.   

The classification accuracy for the classifier that uses three predictors (resistivity, dry density and 

saturation) is 0.5151515 and for the classifier that uses only resistivity is 0.3030303. The 

confusion table for the 3-predictor-classifier is presented in Table 4.  The column labels are the 

true soil type and the row labels are the predicted soil type. The diagonal entries are the number 

of correctly classified soil samples belonging to each soil type.  

 

 

Figure 1. Pairwise dependence for soil resistivity data. 



Table 4. LDA Confusion matrix with three predictors. 

 TRUE LABELS 

PREDICTED LABELS  CH CL-1 CL-2 MH SC SM SP SP-SC SP-SM 

CH 3 0 0 1 0 0 0 1 0 

CL-1 0 0 0 0 0 0 0 0 0 

CL-2 0 0 0 0 0 0 0 0 0 

MH 0 2 2 6 0 0 0 0 0 

SC 1 0 0 0 2 1 0 0 1 

SM 0 0 0 0 0 0 0 0 0 

SP 0 1 0 0 1 1 5 1 2 

SP-SC 0 1 0 0 0 0 0 1 0 

SP-SM 0 0 0 0 0 0 0 0 0 

 

As this table suggests, the LDA does misclassify some of the test samples but it tends to 

misclassify samples into closely related categories such as SP-SM being misclassified as SP.  This 

suggests that a better classification accuracy by LDA could be achieved if we merge similar 

categories such as SP, SP-SM and SP-SC to be a single soil type for the purpose of classification.  

For geotechnical considerations, there is minimal behavioral differences in these group 

classifications and little harm would likely arise from a misclassification in these categories.  

Multi-class Logistic Regression  

The multinom function from the R package nnet (Ripley et al., 2016) was used to fit a 

multinomial logistic regression model (Hosmer et al., 2013) to the soil data.  The misclassification 

error rate for the multi-class logistic regression with all predictors is 0.6363 and the confusion 

matrix is given in Table 5. By comparing the diagonal elements on Table 4 and 5, it is clear that 

the logistic regression improves over the LDA in some categories, e.g., logistic regression correctly 

classifies all 7 MH samples, whereas LDA misclassified one of them as CH. 

Table 5. Confusion matrix for logistic regression. 
 

 
 

 

 

 

 

 

 

TRUE LABELS 

PREDICTED LABELS  CH CL-1 CL-2 MH SC SM SP SP-SC SP-SM 

CH 3 0 0 0 1 0 0 0 0 

CL-1 0 2 0 0 0 1 0 0 0 

CL-2 0 0 0 0 0 0 0 0 0 

MH 0 0 2 7 0 0 0 0 0 

SC 1 0 0  0 1 0 0 0 0 

SM 0 0 0 0 0 0 0 0 0 

SP 0 0 0 0 0 0 5 0 1 

SP-SC 0 1 0 0 0 0 0 2 1 

SP-SM 0 1 0 0 1 1 0 1 1 



Decision Trees 

Tree-based methods for classification were also examined.  Tree-based methods involve 
stratifying or segmenting the predictor space into a number of simple regions, and in order to 
make a prediction for a given observation, the mean or the mode of the training observations is 
typically used in the region to which it belongs (James et al., 2013).  The set of splitting rules used 
to segment the predictor space can be summarized in a tree, called the “decision tree”.  Figure 3 
shows the decision tree for the soil type classification. The classification error for this decision 
tree is 0.54545.  

 

Figure 3. Decision tree for soil prediction. 

Although, tree-based methods are simple and useful for interpretation, they are not competitive 
with the best supervised learning approaches in terms of prediction accuracy. One way to 
improve a decision tree is to use an Ensemble method, like Random Forest (Breiman, 2001), that 
involves producing multiple trees which are then combined to yield a single consensus prediction.  
Combining a large number of trees can often result in improvements in prediction accuracy; 
however, it is at the expense of some loss in interpretation. To correct for this, one can calculate 
variable importance for a predictor used in building a random forest. Roughly speaking, the 
average decrease in residual sum of square can be calculated every time a given predictor is used 
in a tree to measure its importance in predicting the label of an observation. We used a random 
forest classifier on the soil data with 1,000 trees; however, the resulting classifier had the same 
accuracy as a single decision tree.  One advantage was that it provided us with the variable 
importance plot (see Figure 4).  
 



 
Figure 4. Variable importance plot for random forest classifier with 1,000 trees.  

Figure 4 shows that “resistivity” is the most important predictor for soil type prediction, followed 

by “dry density” and “water content”. Although, we should note that some of these predictors 

are strongly correlated, and that correlation can affect model selection. For example, an 

ensemble method can choose one of the two strongly dependent predictors present in a data-

set.  This variable importance plot is interesting compared with the more qualitative analysis 

performed in Mofarraj Kouchaki et al. (2018) which showed that bulk density and degree of 

saturation were the most important variables.  Bulk density and degree of saturation are highly 

correlated through the amount of moisture (water content) in the soil; however, the two 

identified here are not.   

Summary of Performance of Methods for Laboratory Data-set  

Table 6 provides the relative performance of all methods used for the laboratory soil data. Based 

on our experiments and the samples used, logistic regression is the best performer and decision 

tree/random forest performed second.  LDA does not perform as well for classification, perhaps 

because of the violations of the model assumptions.  

Table 6. Relative performance of the methods used 

METHOD CLASSIFICATION 
ACCURACY 

LDA ALL PREDICTORS 0.4545455 

LDA RESISTIVITY ONLY 0.3030303 

LDA RESISTIVITY, DRY DENSITY, SATURATION 0.5151515 

LOGISTIC REGRESSION 0.6363636 

DECISION TREE / RANDOM FOREST 0.5454545 

 



3.3 Supervised Learning for Field Data 

The logistic regression was applied to the field data to classify the soil types as it showed the best 

classification performance.  Based on boring logs collected at the field, only two soil types (i.e., 

classifications) were present (CL, and SP).  As before, a supervised learning approach was used 

for validating our model, as well as for preventing overfitting.  A single split of training and test 

data was used to fit and evaluate the model and is called the “validation set”.  For this validation 

set approach, only 1 observation out of the total 50 test data points was wrongly classified as 

“SP” while its true label was “CL”. This leads to a probability of correct classification of 98%.  Table 

6 shows the confusion matrix for this classification task. 

Table 7. Confusion data for logistic regression for field data.  

 TRUE LABELS 

PREDICTED LABELS  CL SP 

CL 14 0 

SP 1 35 

 

Significance of predictor variables 

One of the biggest advantages of a logistic regression is that it leads to interpretability of the 
fitted model, that is, we can test which predictors are important in driving this classification 
accuracy.  

The ANOVA table below shows that the predictors 𝑅𝑜ℎ𝑚 , Velocity (Vs), and SPT were all highly 
significant with low P-values, confirming our belief that they contain useful information about 
soil type.  

## ANOVA in R 
## Coefficients: 
##                 Estimate Std. Error z value Pr(>|z|)     
## (Intercept)    -17.21807    4.24266  -4.058 4.94e-05 *** 
## R..ohm.m..raw    0.07355    0.02889   2.546  0.01090 *   
## R..ohm.m..Surf   0.03675    0.03528   1.042  0.29753     
## Vs..m.s.         0.07345    0.02569   2.860  0.00424 **  
## SPT.N            0.40265    0.16197   2.486  0.01292 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The receiver operating characteristic (ROC) curve was also plotted and the area under the ROC 
curve for the fitted logistic regression was measured (Figure 5).  We have increased the 
proportion of observations in the validation data-set from 20% to 50% for a more realistic 
situation where we have fewer observations for training the logistic model.  The resulting ROC 
curve has AUC = 0.984. 

 



 

 
Figure 5. ROC curve. 

 

To ensure that this nearly-perfect classification is not an artifact of the randomly divided training 
and test sets, we investigated how the performance varied if we chose different random splits of 
the data into training and validation sets.  The accuracy is very high irrespective of the choice of 
partitioning.  The same classification exercise as before was performed, splitting the data 80-20 
into training and test sets, respectively.  The experiment was replicated 1,000 times and the 
distribution of the correct classification probability was examined (Figure 6).  As expected, the 
peak of this distribution is around 0.95, substantiating our conclusion that the resistivity variables 
can predict the basic soil types with a high accuracy. 
  

 
Figure 6. Distribution of probability of correct classification percentages over 1,000 different random 

splits of training and test data. 

 

Fitting with fewer predictors 

The effect of removing some of the predictors from the model on the performance of the logistic 
regression was also investigated.  This will give us insights on how a model with fewer predictors 
(less cost) will classify the basic soil types.  The classification accuracy with just two predictors 
𝑅𝑜ℎ𝑚 and Velocity results in the same accuracy as before (98%), with one SP misclassified as a CL 
(Table 8).  Figure 7 shows the decision boundary, which suggests that this can be expected in this 
case because the two soil types in the landside data are linearly separable. The ANOVA table 



below shows that if we use fewer predictors, they all turn out to be significant in predicting the 
class type, as expected.  

 

Table 8. Confusion data for logistic regression for field data with only two predictors.  

 TRUE LABELS 

PREDICTED LABELS  CL SP 

CL 15 1 

SP 0 34 

 

## Coefficients: 

##                Estimate Std. Error z value Pr(>|z|)     

## (Intercept)   -21.28751    5.51046  -3.863 0.000112 *** 

## R..ohm.m..raw   0.05780    0.01849   3.127 0.001768 **  

## Vs..m.s.        0.12746    0.03379   3.772 0.000162 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

 

Figure 7. Decision boundary for logistic regression.  

The sole purple dot on the wrong side of the boundary in Figure 7 is the misclassified sample 

point with Soil type = SP that was classified as CL. The solid line separating the two classes is the 

decision boundary created/calculated by the logistic regression fitted on the data with fewer 

predictors.  While this linear boundary works for the given data set and field site, more analysis 

is needed for data from additional, more complex, sites in order to determine the 

appropriateness of this divider.  Additional sites should also contain more varied soil stratigraphy 

so that more than two classifications can be examined.    



Impacts/Benefits of Implementation (actual, not anticipated) 

This study provides quantitative proof for the first time that shows statistical methods, such as 

the logistic regression used here, can aid in the classification of soil type using data derived from 

non-destructive geophysical methods.  Although the field site was simple in terms of stratigraphy 

and number of soil types, the results show that ER and Vs are sufficient (at least for this data set) 

to capture soil type with an 98% accuracy.  The project team is currently searching for an 

additional test site in order to implement the findings and conduct a “blind study”.  It is also 

noted that the models were previously trained with available data.  At a new site, this training 

data would only be available if some destructive traditional drilling and sampling were 

conducted.  The team will also assess the accuracy of the current trained model as it is extended 

to new sites without the use of prior knowledge.  The true benefits and impacts of these findings 

will be dependent on the success of these future field studies. One additional benefit from this 

work is the database which was established.  This database can be extended during future studies 

to provide a unique and valuable set of geotechnical data for statistical purposes.  

4. RECOMMENDATIONS AND CONCLUSIONS 

In this study, we investigated how well several popular statistical methods (e.g., LDA, Logistic 
Regression and Decision Trees using Random Forest) predicted soil type using ER, Vs, and other 
geotechnical parameters.  A more variable laboratory data-set was used to determine the most 
accurate method and then the method was applied to a field (landside) data-set.  A supervised 
learning framework was used in both cases.   

For the laboratory data, with nine different soil categories, logistic regression showed the highest 
classification accuracy (~63.63%) on held-out test cases.  We applied the logistic regression on 
the field landside data with 2 soil categories, and 4 different predictors. For the field data, a 
logistic classifier shows 98% classification accuracy (1 misclassification out of 50 test cases) with 
only ER and Vs needed as predictors.  Although the field data has fewer categories, which makes 
it an easier classification task, we conjecture that the logistic regression will be able to predict 
the soil types even with more categories.  As stated above, a more variable field site is needed in 
order to test this conjecture.   

There are a number of future research directions for soil-type predictions that are also 
recommended.  A few are summarized as the following:  

1. For the laboratory data, the analysis can be repeated for a data-set where similar 
soil-types are grouped to investigate if the classification accuracy can be improved. 
The grouped samples would have little differences geotechnically speaking and it 
would give a much higher sample size per category.  A related question is, are there 
properties of the soil types that lend them to a natural or important pairing which 
might be outside of the USCS classifications traditionally used?  This question arises 
because ER is a fundamental material property and the measure is based on 
electrical properties and mineralogy rather than strictly a behavioral classification.  



2. A principled variable selection strategy, such as best subset selection or penalized 
classification (E.g. LASSO), can be applied or a dimension reduction using Principle 
Components (PCA) can be performed to further develop the analysis.   

3. A more variable field site is needed to test the ability of the trained model to be 
extended to new sites and to provide additional more robust training data for 
additional models.  
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