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Abstract 

This report presents a novel framework for promptly assessing the probability of barge-bridge 

collision damage of piers based on probabilistic-based classification through machine learning. The main 

idea of the presented framework is to divide the potential damage region of a pier into multiple discrete 

sub-regions, and define a classifier for each sub-region based on a probabilistic logistic regression. 

Several different classification models are considered for each classifier due to the uncertainties 

associated with the logistic regression model, and trained through Bayesian inference by using simulation 

data before damage events occur.  Bayesian model selection is adopted to select the best classification 

model and its corresponding effective features extracted from measurements for enhancing the prediction 

accuracy. The best trained classification models then are used to expeditiously predict the probabilities of 

damage occurring in all sub-regions. The presented framework can be implemented in a recursive manner 

by dividing a structure into several hierarchical levels of different divisions of sub-regions, and can be 

extended to identify other types of structural damage. The effectiveness and applicability of the presented 

framework are demonstrated through the numerical simulation of identifying barge-bridge collision 

damage locations of one pier of a prototype bridge. Finally, limitations and future research directions are 

also discussed.  

 

 

 

Keywords Barge-Bridge Collision, Bayesian Inference, Probability, Feature Selection, Logistic 

Classification Model, Transitional Markov Chain Monte Carlo Method 

 

 



                                                                                                      

4 
 

1 Project description  

Piers of bridges across major navigation waterways frequently suffer from barge collisions, 

resulting in the closure of both bridges and waterways to traffic for assessing the potential damage. 

Promptly and accurately locating potential collision damage locations provides the basis for further 

quantifying the damage extent and facilitating the informative decision-making on the operation of 

highway and navigation channels, thus can significantly reduce the economic losses resulted from 

unnecessary closure.  

 

Barge-Bridge collision damage may be parameterized by unknown parameters associated with 

structure physical properties, e.g., the reduced stiffness of damaged regions. Thus, numerical models 

representing potential damage structures can be established and then damage-related parameters can be 

determined through the model calibration by matching the model predictions with the field vibration 

measurements collected from the damaged structures. This model-based damage identification algorithm 

has been extensively studied in the past [1-3]. The damage parameters are usually obtained through 

optimization by minimizing the error between the field measurements and predictions of numerical 

models [4-6]. However, optimization algorithms always give a single best solution to structural damage 

identification problem, and cannot address the uncertainties associated with field measurements and 

numerical models. 

 

To quantify uncertainties associated with the structural model and measurement errors, Bayesian 

inference framework has been proposed [7] and adopted for the vibration-based damage identification 

approach, including its application for assessing the potential damage of piers due to barge collisions [8]. 

In such application, uncertain parameters are represented by their probability distribution functions (PDFs) 

and updated by using the available measurements with possible numerical structural models. In 

implementation of the existing probabilistic-based damage identification, however, the structural model 
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needs to be executed for each sample of unknown structural parameters to determine the likelihoods of 

those parameters for depicting their probabilistic distribution. This demands significant computational 

time of hours or days for complex structures [9-10]. Since this intensive computation has to be conducted 

with measured responses from structures after potential damage occurs, it is almost impossible to apply 

the probabilistic-based damage identification approach to determine the existence of the potential damage 

for prompt decision-making after barge collision incidents. 

 

To promptly identify the potential damage and its location in bridge piers after barge-bridge 

collisions, this report proposes and explores a novel probabilistic-based classification framework for 

locating collision damage based on machine learning through Bayesian inference. The novelty of the 

proposed framework lies in its ability to identify probabilities of damage occurrence in specific locations 

through the probabilistic classification and shift intensive computational burden from the assessment 

process phase after barge-bridge collision events to the prior preprocessing phase in advance of any 

incident occurrence, resulting in a significant reduction of computing time in comparing with traditional 

probabilistic-based inference for damage identification. To authors’ best knowledge, this shift of the 

computational burden has not been explored for probabilistic-based assessment on potential bridge pier 

damage due to the barge-bridge collision and may initiate a new perspective for probabilistic-based 

approach to identifying other types of damage by using vibration measurements.  

 

Within the proposed framework, the potentially damaged region of a structure is artificially 

divided into several discrete sub-regions, and a two-class classifier for each sub-region then is defined 

based on the probabilistic-based logistic regression model. Different classification models are considered 

for each classifier due to the uncertainties associated with the logistic regression model, and trained 

through Bayesian inference with effective feature vectors along with their corresponding location labels 

that describe whether collision damage occurs in the sub-region or not. The feature vectors capturing 
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effective information of damage occurrence in different sub-regions are extracted from simulated 

dynamic responses of structural systems by using Principle Component Analysis (PCA) [11]. By using 

Bayesian model selection, different type of effective features and their corresponding different types of 

classification models for the classifier of each sub-region can be explored and evaluated in terms of their 

model evidences. The most effective feature vector corresponding to the best model can be identified. The 

optimal threshold for distinguishing the damaged and undamaged scenarios from classification labels is 

determined by maximizing the rate of correct classification of all probabilistic samples of prediction 

labels obtained from Bayesian inference for all events in the training dataset. 

 

In application phase, the best trained classification models can be used to expeditiously classify 

each sub-region in terms of the probability of damage based on the input feature vectors obtained from 

field measurements after barge-bridge collisions. Uncertainties associated with the classifiers can be 

included in the obtained probability of damage. The proposed framework and its applicability are 

illustrated and examined through numerical simulation of damage identification of barge-bridge collision 

based on the finite element model of a prototype bridge. The limitations of the presented framework and 

feature research directions are also discussed. 

 

2 . Methodological Approach 

2.1 Feature Extraction and Label Defining  

Let { , ,r=1, …,m,  j=1, …,Ns} denotes the modal propriety data simulated from a 

undamaged structure, where  is  the r-th modal frequency, is the r-th mode shapes at different 

measurement locations, and m and Ns are the numbers of observed modes and measured degrees of 

freedoms (DOFs) respectively. Let { , ,r=1, …,m,  j=1, …,Ns} be the modal frequencies and mode 

shape components at Ns measured DOFs obtained from a collision damage scenario simulated through the 

rω̂ rjϕ̂

rω̂ rjϕ̂

rω rjϕ
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calibrated numerical structural model of a bridge structure. Thus, the vector of the r-th modal property 

change   before and after collision damage can be obtained separately for modal 

frequencies and mode shapes as followings: 

                                                                                                                                    (1) 

                                                                                                                                  (2) 

where and are the changes of modal frequency and mode shape components of the r-th mode 

respectively. Assembling those modal change vectors yields the matrix of modal property changes below: 

εm×(Ns +1)=[ε1, ε2,…εm]T                                                                                                                    (3) 

This matrix can be interpreted as changes of structural characters caused by the occurrence of damage.  

 

Although the above matrix ε may be directly used in the proposed framework to identify collision 

damage locations, manipulating all the measurements such a matrix within an identification algorithm 

may be too redundant and time-consuming. Thus, the PCA [11] is applied to extract representative 

features of matrix ε in E q. (3) to capture effective information on the possible damages occurring in 

different sub-regions of a structure. The effectiveness of the PCA method for feature extraction from 

measurements has been verified by Magalhaes et al.[12] and  Huang et al. [13]. In the presented 

framework, only the first principal component of the modal change matrix of a damage accident may be 

considered by projecting all the changes of frequencies and mode shapes into the first principal 

component through PCA [11]. In other word, the Ns+1 column vectors in matrix ε are compressed into a 

unidimensional feature vector X=[x1, x2,…, xm]T.  

 

For a specific sub-region of a bridge pier, two classes of its condition are defined: one for damage 

locating in this sub-region and the other for damage occurring out of this sub-region. Let 

D={(X,Y)}={(X1, Y1), …, (Xi, Yi), …, (XN, YN); i=1, 2…N} denotes the events dataset, where  Xi=[xi1, xi2, 

][ ϕω εε rjrr =ε

rrr ωωεω ˆ−=
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…, xim]T and Yi ∈{0,1} are the feature vector and label for the i-th event, and Yi=1 claims that damage 

locates in the sub-region and Yi=0 means that damage is out of this sub-region. 

 

2.2 Logistic Classification Model with Linear Discriminant Function 

The presented framework is actually to establish a binary classifier for each specified sub-region 

and implemented through a set of classifiers for all divided sub-regions.  As an illustration, Fig.1 presents 

the sub-region divisions of the potential damage area of a bridge pier and their corresponding classifiers, 

which are defined based on the logistic regression model of a linear discriminant function. Generally, 

each sub-region has its own binary classifier as shown in Fig.1 based on the following logistic regression 

model [14]: 

                                                                                                 (4) 

where  is the output prediction label of the logic regression model for the input feature vector Xi of 

observed modal change matrix in Eq. (3), and α is unknown model parameter vector to be determined for 

the function f (Xi| α) in the logistic regression model as defined in the following.  
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Fig.1 Sub-region division of a bridge pier 

 

In the presented framework, the function f (Xi| α) in Eq. (4) is a linear discriminant function of 

feature vector Xi, and defined by unknown coefficient vector α= [α0, α1, …, αm ]T in the  following way: 

f (Xi| α)=  =[α0, α1, …, αm ]•[1 xi1, xi2, …, xim]T =α[1 Xi
T]T                               (5) 

Theoretically, different dimensions and types of feature vectors can be extracted from the modal change 

matrix as defined in Eq. (3) for a given damage event by including different number of modal modes. 

There is uncertainty about how many modal modes should be selected for effective classification.  This 

uncertainty about selecting feature vectors leads to the uncertainty of the logistic regression model in Eq. 

(4). Thus, different classification models for the classifier of a specific sub-region are considered in terms 

of different dimensions of the linear discrimination functions, leading to different dimensions of model 

parameter vector α, which correspond to the different selection of extracted feature vectors. 
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With given training data D obtained from known damage events, the unknown coefficients α in Eq. 

(5) for the classifier can be determined through matching the prediction labels of the regression model (4) 

with the actual labels of known events in the training dataset, i.e., minimizing the square sum of errors

.   

 

With the trained logistic classification model for each sub-region, the label of a new barge-bridge 

collision event can be obtained to categorize this new event into one of two classes: damage occurring in 

this sub-region, i.e., the first class, if f(Xi |α) > 0, or no damage locating in this sub-region, i.e., the second 

class,  if f(Xi |α) < 0. In practical application for the input feature vector Xi of a specific damage event, the 

larger the discriminant function f(Xi|α) is, the more possible the event is categorized into  the first class; 

and the smaller f(Xi|α) is the more likely the event is categorized into  the second class.  Thus, it can be 

reasonable to determine that f(Xi|α)=0, resulting in  Yi=0.5, is a theoretical division between  the above 

two classes. 

 

2.3 Training Logistic Model through Bayesian Probabilistic Inference 

By fitting the prediction labels obtained from the classifier to its true labels of all known events in 

training dataset, the logistic model can be trained by determining its model parameter vector α through 

several existing optimization approaches, such as least squares, Fisher’s linear discriminant, and 

perceptron algorithm [15]. However, those approaches to training the logistic model are deterministic 

methods that can only determine one optimal parameter vector α and cannot quantify uncertainties 

associated with classification model and measurement errors.  

 

As an alternative method, Bayesian probabilistic inference can be used to estimate unknown 

parameter vector α with prior knowledge and quantify the aforementioned uncertainties. In Bayesian 

probabilistic inference, uncertainty parameters are described through their probability density function 
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(PDF) [16]. The presented framework applies Bayesian probabilistic inference to update the posterior 

PDF p(α|D, Mj) of unknown parameter vector α for the classification model class Mj with given training 

data D. To consider uncertainties associated with the classifier, a set of candidate classification model 

classes M={Mj, j=1, 2, …, NM} can be considered in terms of different selections of feature vectors as 

described previously in the section 2.2.  

 

To apply Bayesian theorem, the likelihood function has to be established based on the assumption 

that the error between the prediction label  obtained from the logistic model and the true label Yi of 

known event in training data D is a zero-mean stationary normally-distributed stochastic process with a 

shared standard deviation σ. This assumption is demonstrated by the maximum information entropy 

principle [16-17] to be able to incorporate the maximum uncertainties into the unknown parameters. Thus, 

the likelihood function can be formulated as the PDF of multiple independent and normally distributed 

errors: 

                                                              (6) 

 

It should be noted that the standard deviation σ is also unknown and needed to be inferred through 

Bayesian inference. Thus, the uncertain parameter vector in Bayesian inference becomes  x= {α0, α1, 

α2, …, αm, σ}T = {αT, σ}T. 

 

According to Bayesian theorem, the posterior PDF of uncertainty model parameters x can be 

expressed as: 

                                                                                          (7)  

iŶ

( )








−−⋅= ∑
=

N

i
iiNj YY

σσπ
Mp

1

2

2
ˆ

2
1exp

)2(
1),|( αD

)|(
)|(),|(

),|(
j

jj
j Mp

MpMp
Mp

D
xxD

Dx
⋅

=



                                                                                                      

12 
 

where p(D|x, Mj)  is the likelihood function as defined in Eq. (6); p(x| Mj) is the prior PDF of uncertain 

parameter vector x and usually is assumed based on prior knowledge or judgment; and the denominator 

p(D| Mj) is referred to as model evidence of model class Mj , which reflects the quality of model class Mj, 

and is actually a normalization constant that ensures the integral of posterior PDF over parameter space 

equal to unity. Thus, it can be expressed as: 

                                         (8) 

 

Typically, directly integrating the multidimensional exponential function in Eq. (8) and obtaining 

the posterior PDF of uncertain parameter x in Eq. (7) is impractical. Thus, stochastic simulation methods 

have been proposed as an alternative to numerically estimate the posterior PDF in Eq. (7) and model 

evidence in Eq. (8) by generating statistic samples drawn from the posterior PDF of uncertain parameter x. 

In the presented framework, the Transitional Markov Chain Monte Carlo (TMCMC) method proposed by 

Ching and Chen [18] is adopted for conducting stochastic simulation. Interested readers are referred to 

[18-19] for more detailed information and implementation of TMCMC sampling algorithm. 

 

2.4 Feature Selection Based on Bayesian Model Evaluation 

Bayesian theorem also includes the model class section, which can be also applied at model class 

level to evaluate different model classes. In the presented framework, different classification models can 

be defined from different linear discrimination functions in the logistic regression model as defined in Eq. 

(4) and Eq. (5). Those different classification models actually correspond to the selection of different 

features extracted from the modal change matrix as defined in Eq. (3). Thus, Bayesian model selection 

can provide a new perspective for the selection of effective feature vectors for defining and training 

classifiers in the presented framework.  
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The posterior model probability for classification model class Mj among the classification model 

classes M={Mj, j=1, 2, …, NM} can be obtained with the prior model probability p(Mj|M) and given 

training data D as follows: 

                                                                        (9) 

Usually, identical prior probabilities can be assumed for all candidate model classes, i.e., p(Mj|M)=1/NM,  

if there is no any prior knowledge. The most plausible model can be usually identified in terms of its 

model evidence p(D| Mj), which can be obtained as a by-product from the TMCMC  [18-19]. 

 

2.5 Probability of Damage Predicted by Classification Model 

Through implementation of Bayesian inference with stochastic simulation through the TMCMC 

[18-19], total K samples { xk, k=1,  2, …, K} of the classification model parameter x can be obtained to 

depict the posterior probability distribution of the unknown parameter x. With those samples of the 

classification model parameter x, total K prediction labels can be obtained from the logistic regression 

model for the given input feature vector X of a new barge-bridge collision event or damage event. Those 

prediction labels describe the probability distribution of the predicted labels of the considered event 

represented by feature vector X.  

 

For the classification model based on the logistic regression, each individual prediction label   

usually can be interpreted as the probability of damage occurring in the considered sub-region. With the 

probability distribution of the prediction label Y for a given event obtained from Bayesian inference, the 

probability that the prediction label is equal to Y can be estimated based on the PDF of prediction labels 

as P(Y | x, D, Mj)•dY.  Thus, the probability that damage occurring in the considered sub-region can be 

obtained by Y•P(Y | x, D, Mj)•dY.  According to the total probability law [20] and Monte Carlo integration 
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[21], the prediction probability that the damage occurring in the considered sub-region can be estimated 

based on all the prediction labels of the classification model for the given event: 

                                                                              (10) 

where is the prediction label of the regression model (4) with the discriminant function defined by the 

k-th sample xk  of the classification model parameter x.  

 

From Eq. (10), it can be clearly noted that the predicted probability of the damage occurring in 

the considered sub-region is actually the mean value of all the prediction labels of the classification model 

for the given event.  Compared to existing deterministic methods, however, the advantage of the 

presented probabilistic-based framework can not only provide a best prediction label, but also can 

characterize the probability distribution of the prediction labels to quantify uncertainties or confidence 

level of the prediction results, which can be illustrated in the probabilistic distribution of the prediction 

labels as shown in the next section and the subsequent numerical simulation.  

 

2.6 Optimal Threshold of Prediction Labels and Modified Probability of Potential Damage  

Theoretically, based on the classifier defined in the section 2.2, the prediction label is expected to 

be 1 for damage occurring in the considered sub-region or 0 for non-damage locating in this sub-region. 

However, the actual prediction label provided by a specific trained classification model of the considered 

sub-region for a given event often ranges from zero to one due to the impact of the inaccurate model and 

other uncertainties associated with the imperfect devices, environmental noises, and computational 

numerical errors. Those uncertainties may lead to misclassification of the trained classifier, which 

includes two cases: (1) the event of the damage actually occurring in the current sub-region may be 

erroneously classified as no damage event with a prediction label less than 0.5 and approaching zero, and 
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(2) the event of damage actually occurring out of the current sub-region may be erroneously categorized 

as damage event with a prediction label larger than 0.5 and close to one.  

 

Thus, even though the theoretical threshold of the prediction labels, which divides between the 

damaged and undamaged scenarios for a specific sub-region can be taken as 0.5 as described in the 

section 2.2, this theoretical threshold may cause some misclassification of sub-regions for all events in the 

training dataset due to the aforementioned uncertainties. To mitigate such a misclassification problem, an 

optimal threshold of the prediction labels is proposed in the presented framework to minimize the rate of 

misclassification or maximize the rate of correct classification for all samples of prediction labels of all 

known events in the training dataset as followings.  

 

The rate of correction classification of a probabilistic-based classifier based on a given thresholds 

δ can be defined below. Fig.2 illustrates the histogram of prediction labels of two events A and B that 

correspond to damage occurring out of and in a given sub-region respectively. For the event A of damage 

occurring out of the considered sub-region, the prediction label is expected to be less than the defined 

threshold δ. Thus, any samples of the prediction label less than δ are regarded as the correct classification, 

while those exceeding δ are considered as the misclassification. This leads to the formulation of the rate 

of the correct classification rA of the classification model for the event A as: 

                                                                                         (11) 

where P(YA | x, D, Mj) is the PDF of the prediction labels of the event A, nA is the number of the samples 

of the prediction label less than the defined threshold δ, and K is the number of the total samples. 
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Fig.2 Schematic diagram of threshold and prediction labels 

 

For event B of damage occurring in the considered region, the prediction label is expected to be 

greater than δ. Thus, any samples of the prediction label larger than the defined threshold δ are regarded 

as the correct classification, while those less than the defined threshold δ are considered as the 

misclassification. Thus, the rate of the correct classification rB for the event B of the damage within the 

sub-region can be calculated as followings: 

                                                                                          (12) 

where P(YB | x, D, Mj) is the PDF of the prediction labels of the event B, nB denotes the number of 

prediction labels exceeding δ, and K denotes the number of total prediction labels. 

  

        The impact of the defined thresholds on the rate of correct classification of a probabilistic-based 

classifier can be illustrated by the following example. Fig.3 depicts the prediction labels of seven 

exemplary events. The first four events in Fig.3 are those with damage occurring within the considered 

sub-region and the other three are those with damage out of the sub-region. Three defined thresholds 

δ1=0.4, δ2=0.5, and δ3=0.6 are also plotted in Fig.3. If the defined threshold is selected as δ1=0.4 , all the 

first four events can be correctly classified because all their prediction labels exceed δ1. However, the last 

event is misclassified as the event of damage occurring in the considered sub-region for its prediction 
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labels greater than δ1. As δ1 further decreases, this situation is gradually exacerbated because more 

prediction labels of events of damage actually out of the sub-region will exceed the decreased threshold, 

leading to more misclassification. On the contrary, if the defined threshold is chosen as δ3=0.6, all the last 

three events can be correctly classified as the event of damage occurring outside of the sub-region. 

Nevertheless, the third event of damage occurring in the sub-region is obviously misclassified because its 

prediction labels are less than the threshold. As δ3 increases, this misclassification can further deteriorate 

since more events of damages truly occurring in the sub-region are misclassified as those outside the sub-

region because their prediction labels are less than the increased threshold. When the defined threshold is 

selected as δ2=0.5, all the seven exemplary events can be correctly classified, leading to the maximum 

rate of classification. Thus, the defined threshold of δ2=0.5 can be regarded as the optimal threshold for 

the classification model based on the available known events. 

 

Fig.3 Illustration of optimal threshold definition 
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If the training dataset D contains w events of damage occurring out of the considered sub-region 

and g events of damage occurring in the sub-region, the rate of correct classification of the classifier 

model for the considered sub-region for all events in the training dataset based on a defined threshold δ 

can be formulated as: 

                          

                             

(13) 

where nλ is the number of prediction labels of the λ-th event of damage occurring out of the sub-region 

that are less than δ, nτ is the number of prediction labels of the τ-th  event of  damage occurring in the sub-

region that are greater than δ, K is  the number of total samples of prediction labels  of each event, and N 

is the number of the total number of considered events.  

 

It is worth noting that the rate of correct classification R in Eq. (13) completely depends on the 

selection of the defined threshold δ. By maximizing the rate of correct classification R for a specific sub-

region for all events in training dataset D, an optimal threshold δ can be determined. It is reasonable to 

assume that the optimal threshold obtained in such a way can result in the largest rate of the correct 

classification for the considered sub-region for any new barge-bridge collision or other damage. 

 

With the aforementioned rate of correct classification of a classifier, the probability of no damage 

locating in the considered sub-region determined by a classifier for a newly observed event can be 

considered to be composed of two aspects: one is the percentage of its prediction labels less than the 

optimal threshold as defined in Eq. (11), which can be interpreted as the probability of damage occurrence 

in the considered region for an observed event if the classifier is correct ; and the other is the maximum 
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rate of correct classification R of the classifier as defined in Eq. (13), which can be interpreted as the 

probability of correctness of the classifier based on the historical or past known events. Thus, the 

probability of no damage occurring in this considered sub-region can be modified as the following: 

%%),,|(0)( 100Y
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1R100dYMDYYPRYP
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j ××=××== ∑∫

=≤ α
α

δ

x                                     (14) 

where Yt is the t-th prediction label less than the optimal threshold δ; L is  the number of the labels that are 

less than δ among the total K prediction labels. The probability of on damage is considered here for 

modification due to inaccuracy of the classifier in terms of the rate of correct classification as determined 

in the above. This modification can lead to the reduced probability of no damage on the conservative side.  

Therefore, the modified probability of damage occurring in the considered sub-region for a newly 

observed event can be obtained as 

0)(11)( =−== YPYP                                                                                                   (15) 

where P(Y=1) is the probability of damage occurring in the considered sub-region, and P(Y=0) is 

probability of no damage as determined in Eq. (14).  The above modification can be interpreted as that the 

probability of damage can be increased in considering the inaccuracy of the classifier in terms of the rate 

of correct classification of the classifier.   

 

3. Results/Findings 

3.1 Simulation of Damage Identification of Barge-Bridge Collision  

3.1.1 Finite Element Model of the Prototype Bridge 

To illustrate the proposed framework and verify its applicability, training data and test data of 

different damage scenarios of barge-bridge collision were simulated from the finite element (FE) model 

of a prototype bridge. The prototype bridge is 155m (510ft) in length with nine spans and eight piers. The 

FE model of the selected bridge is established in SAP 2000/Bridge 14 [22] under the linear elastic 

assumption as illustrate in Fig.4 (a). The cross sections of bridge decks, girders, and piers are modeled as 
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the same as their real properties of the prototype bridge. For simplicity, an equivalent pile is used to 

replace the group of piles under each bridge pier. The section properties of the equivalent piles were 

determined based on the group equivalent pile model proposed by Mokwa and Duncan [23]. The 

interaction between soil and pile foundation is modeled by a series of discrete springs distributed along 

the equivalent pile (see Fig.4 (a)) based on the selected soil’s p-y relation. The potential damage regions 

of bridge piers that are mostly probable to be collided by barges are modeled using solid elements 

provided in SAP 2000/Bridge 14 [22]. 

            

(a)                                                             (b) 

Fig.4 (a) FE model of the prototype bridge     (b) The division of the potential damage area 

 

In this illustration example, the third pier near the middle span of the prototype bridge, namely 

Pier3 located in the main water channel as shown in Fig.4 (a), is considered vulnerable to barge-bridge 

collision. Therefore, the potential damage region is assumed to be the middle portion of the Pier3 and was 

further divided into eight different sub-regions by three planes of x-y, x-z, and y-z as shown in Fig.4 (b). 

Thus, total 8 two-class classifiers ranging from Classifier 1 to Classifier 8 are required to be established or 

trained to locate the potential damage in one of the eight sub-regions once vibration measurements are 

obtained after barge-bridge collision occurs in this pier. 

 

x
y

z

y-z Plane

x-z Plane

x-y Plane
Sub-region 5 Sub-region 6

Sub-region 7Sub-region 8

Sub-region 1 Sub-region 2

Sub-region 3Sub-region 4
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All simulated modal property data of the bridge are assumed to be the modal properties obtained 

by processing vibration measurements captured after barge-bridge collision incidents from the distributed 

sensors at the thirteen selected observation points S1-S13 as shown in Fig.4 (a). The sensors S1-S9 were 

assumed to be placed at the middle points of the nine spans for capturing the dynamic response along z 

direction, and S10-S13 were assumed to be installed at the junctions of piers and girders for collecting the 

dynamic response in x direction. In this simulation, the modal analysis was performed on the structural 

model of the damaged and undamaged bridge to generate those modal property data. The change of the 

bridge modal properties was obtained by subtracting the modal measurement of undamaged bridge prior 

to the damage from the modal responses of the damaged bridge. 

 

3.1.2 Training Data and Evaluation Data 

For each sub-region, ten collision accidents with different degrees of damage were simulated by 

assigning random reduction factors in the range of (0 1) to the elastic modulus of the sub-region 

respectively, meanwhile keeping the elastic modulus of other sub-regions unchanged. Thus, for each sub-

region, ten modal response matrixes composed of natural frequencies and modal shapes can be obtained 

from 13 measured DOFs (or Ns=13) corresponding to the distributed sensors in different damage extent. 

By subtracting the measured modal data { , ,r=1, …,m,  j=1, …,Ns} of the undamaged structure 

from those modal response matrixes of ten collision (or damage)  events, ten modal change matrixes can 

be obtained based on Eq. (3). From those matrixes, ten feature vectors can thereby be extracted to 

represent those events of collision damage occurring in each considered sub-region respectively. The first 

five feature vectors of the simulated collision damages in each sub-region are selected to constitute 

training dataset D, resulting in 40 collision events in the training dataset for each classifier of eight sub-

regions, while the last five feature vectors in each sub-region make up the test (or evaluation) dataset for 

each classifier, resulting in the other 40 collision events in the test dataset. 

 

rω̂ rjϕ̂
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To consider the impact of field environment on modal measurements, three level noises of 0%, 5% 

and 10% are added to the simulated modal responses. Thus, the contaminated modal responses can be 

expressed as  and , where and are the noisy natural 

frequency and modal shape, η=noise level of 0%, 5% or 10% and rand is a random number within [-1 1].  

 

3.2 Implementation of Presented Framework to Establish Classifiers  

3.2.1 Extracting Features from Modal Changes and Establishing Classification Model Classes 

For a specific collision or damage event, five different sets of modal properties were considered 

by selecting the first 5, 7, 10, 12, 15 mode of frequencies and modal shapes respectively. By compressing 

the modal change matrixes of those modal properties into a unidimensional vector through PCA, five 

dimensionally different feature vectors can be derived for each event. Thus, five different classification 

models can be established for the classifier of each sub-region.  

  

As an example, Table 1 lists the five possible classification models for Classifier1 corresponding 

Sub-region1 in Fig.4 (b). The dimensions of the discriminant functions and unknown parameters are also 

tabulated in Table 1. It is necessary to state here that the possible classification models of other seven 

classifiers (Classifier 2-8) were also established in the same way. 

 
Table 1 Model Classes of Classifier1 

Model class M1 M2 M3 M4 M5 
Considered numbers of 

modal modes  5 7 10 12 15 

Dimension of 
discriminant function 6 8 11 13 16 

Unknown parameters α0~α5, σ α0~α7, σ α0~α10, σ α0~α12, σ α0~α15, σ 
 

3.2.2 Training Classification Models through Bayesian Inference with TMCMC Simulation 

Bayesian inference with the TMCMC sampling [18-19] was adopted to train classification models 

for determining the unknown parameters of these models. The prior distributions of unknown model 

)1( randrr ⋅+= ηωω )1( randrjrj ⋅+= ηϕϕ rω rjϕ
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parameters were proximately determined based on engineering judgment for implementing Bayesian 

inference. To obtain more accurate estimation of the prior distribution of unknown parameters, the Linear 

Discriminant Analysis (LDA) proposed by Fisher (1936) [24] for two-class problems was first applied by 

using training dataset to predetermine unknown model parameters or coefficients of the discriminant 

function in Eq. (5). 

The second column of Table 2 lists those model parameters or coefficients of discriminant 

function, i.e., , predetermined by using the LDA method with noiseless modal data for classification 

model M5 of Classifier 1. Then, those identified parameters  were taken as the mean of the prior 

distribution of those unknown parameters α for Bayesian inference. In the first attempt in this simulation, 

the prior distributions of the unknown parameters in the TMCMC simulation were drawn from the 

uniform distribution over the range of [-3 , 5 ]. Besides, the prior distribution of the shared error 

deviation σ in Eq. (6) was taken as a uniform distribution over the range of [0 2]. 10000 samples of 

potential parameter vector x for the classification model class M5 of Classifier 1 were generated and 

updated to represent the prior or posterior PDF of x.  

Table 2 Model Parameters of Model M5 Identified by LDA and Bayesian Inference 

Parameters 0% noise  5%  noise  10% noise  
LDA TMCMC  LDA TMCMC  LDA TMCMC  

α0 -0.797 -6.986  -0.321 -1.561  -0.0789 -0.380  
α1 13.745 -0.133  0.179 0.503  -0.003 -0.006  
α2 0.055 0.229  0.100 0.345  0.025 0.010  
α3 3.533 32.496  -0.162 -0.790  0.051 -0.084  
α4 -16.966 -30.720  -0.037 -0.078  -0.015 -0.041  
α5 0.245 2.203  0.006 0.008  -0.008 -0.031  
α6 -0.066 -0.369  -0.019 0.013  0.019 0.013  
α7 0.012 0.079  -0.057 -0.179  -0.000 -0.000  
α8 -0.075 -0.066  0.006 0.027  -0.016 -0.070  
α9 -0.012 -0.019  0.067 0.322  0.030 -0.056  
α10 0.010 -0.008  0.116 0.552  -0.010 -0.046  
α11 -0.031 -0.210  0.027 0.104  0.071 0.349  
α12 -0.063 -0.122  0.024 -0.029  -0.059 -0.281  
α13 -0.378 -3.117  -0.006 -0.025  -0.034 -0.163  
α14 -0.097 -0.281  0.046 -0.100  -0.012 -0.042  
α15 -0.068 -0.273  0.028 0.132  0.005 -0.012  
σ - 1.685  - 1.998  - 1.986  

Note: “-” means no deviation available. Results from TMCMC is the mean values of derived samples  
of each model parameters. 
        

α̂

α̂

α̂ α̂
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However, the histograms of the posterior PDF of parameters α3 and α5 exhibit that their samples 

heavily concentrate in the boundary of the sample space, as illustrated in Fig.5, indicating that the ranges 

of the prior parameters were not properly provided.  Thus, the prior samples of all unknown parameters 

were eventually taken as uniform distribution from the expended range of [-8 , 10 ] for each model 

class in this simulation. 

 

 

Fig.5 Histograms of the posterior PDF of unknown parameters α3 and α5 

 

As an illustration, the results from the implementation of both LDA and TMCMC for the 

classification model M5 of Classifier 1 with the training dataset are presented. In such  implementation, 

only five feature vectors corresponded to the events of the simulated collision damage in Sub-region1, 

while the other thirty-five feature vectors were associated with the events of  the simulated damage in 

other sub-regions. Thus, in the training dataset, only the first five labels were defined to be one and the 

other labels were assigned to be zero, leading to the two classes among 40 events.  

 

Fig.6 presents the histograms of the samples of unknown parameters obtained from the TMCMC 

simulation for the M5 of Classifier1. The mean values of samples inferred from Bayesian method using 

noise free data are tabulated in the column under TMCMC in Table 2. The identified results of the two 

methods for the M5 of Classifier1 using different level noise measurements are also presented in Table 2. 

Significant differences can be found between the parameters identified from the LAD method and the 

α̂ α̂
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sample mean values obtained from the TMCMC simulation, even though the samples of the prior PDF of 

unknown parameters were drawn from the uniform distribution centered at the results from the LDA 

method.  

 

Fig.6 Histograms of the posterior PDF of each complements unknown model parameter vector α  
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3.2.3 Evaluation of Trained Classifiers   

Once the eight classifiers corresponding respectively to the eight sub-regions were trained, they can be 

evaluated by using test data through comparing the predicted probabilities with the known events. In this 

study, total 10000 statistical samples of prior PDF of the unknown parameters were taken and updated to 

samples of posterior PDF of the model parameters in the Bayesian inference, resulting in 10000 

prediction labels for a specific input feature vector.  

 

As an example, Fig.7 illustrates the histograms of the prediction labels of model class M5 of 

Classifier1 for two input feature vectors XA and XB, which respectively represent two accidents, i.e. 

damage in and outside of the sub-region1 in the noiseless test dataset. It can be found that all prediction 

labels of M5 for feature vector XA were greater than 0.5, indicating the damage is correctly located in Sub-

region1.  The damage scenario represented by feature vector XB was also correctly identified outside of 

Sub-region1 because all its prediction labels less than 0.5. It is noteworthy that the trained classifier only 

took approximately a quarter second to provide samples of the prediction label for the given input feature 

vector of a specific event, indicating a very high efficiency over traditional damage detection algorithms. 

Those results illustrate that the presented method for locating potential damage of collision or other types 

of damage has acceptable accuracy and efficiency. 

 

Fig.7 Predictions of the classification model class M5 of Classifier1 
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3.2.4  Selection of Effective Feature and Classification Model Based on Bayesian Model Evaluation 

Five dimensionally different feature vectors extracted from modal properties as shown in Table 1 

lead to five different classification models for each sub-region. Those different classification models may 

be directly evaluated and compared in terms of their rates of correct classification of events in both 

training and test dataset. With prediction labels obtained from the trained classification model by using 

samples of model parameters, the rate of correct classification of a classification model class can be 

determined based on Eq. (13) by comparing its prediction labels with the defined threshold as defined in 

the Section 2.6. 

 

The rates of correct classification of the five models of each classifier for both noiseless training 

dataset and test dataset are shown in Table 3. Results show that the model M5 outperforms the other four 

model classes for both training and test dataset for Classifier 1 and Classifier 6. For Classifier 4, the 

model M2 can 100% correctly identify the locations of damage events in both datasets. The model M3 has 

the best performance for Classifier 8. It is noteworthy that there are more than one model classes in 

Classifier 2, 3, 5, 7 that can give 100% correct predictions for both datasets.  

 

On the other hand, Bayesian model selection can provide an alternative way to evaluate model 

classes based on model evidences estimated from the TMCMC simulation. The log-evidences of the five 

model classes for each classifier are presented in Table 3. Results show that the log-evidence of the model 

M5 is the largest among the five model classes for Classifier 1, 4, 6, and 8. For Classifier 2, 3, and 7, the 

model M1 has the largest log-evidence than others. For Classifier 5, the model M2 has the largest log- 

evidence. The probabilities of all model classes were computed from Eq. (9) with their model evidences 

and are also presented in Table 3. The results suggest that the best classification model classes for all 

classifiers ranked from Classifier1 to Classifier 8 are the model M5, M1, M1, M5, M2, M5, M1, and M5 

respectively. 
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Table 3 Evaluations of Model Classes (0% noise) 
Model   M1 M2 M3 M4 M5 

Classifier1 
Rates (%) Train dataset 87.50 90.00 87.50 97.50 100.00 

Test dataset 87.50 95.00 87.50 90.00 100.00 
Model evidence                 

 

log[f(D|M)] -1.85×103 -1.50×103 -1.73×103 -830.30 -287.05 
Model 

 

p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier2 
Rates (%) 

Train dataset 100.00 95.00 100.00 100.00 100.00 
Test dataset 100.00 92.50 100.00 100.00 100.00 

Model evidence log[f(D|M)] 18.89 -704.50 -54.09 -37.35 17.54 
Model probability p(Mj|D,M) 0.79 0.00 0.00 0.00 0.21 

Classifier3 
Rates (%) 

Train dataset 100.00 100.00 97.50 92.50 100.00 
Test dataset 100.00 100.00 92.50 92.50 97.50 

Model evidence log[f(D|M)] 14.20 -384.86 -843.00 -1.31×103 -402.28 
Model probability p(Mj|D,M) 1.00 0.00 0.00 0.00 0.00 

Classifier4 
Rates (%) 

Train dataset 87.50 100.00 95.00 92.50 100.00 
Test dataset 87.50 100.00 95.00 90.00 97.50 

Model evidence log[f(D|M)] -1.70×103 -477.97 -789.82 -768.69 -45.55 
Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier5 
Rates (%) 

Train dataset 87.50 100.00 95.00 100.00 100.00 
Test dataset 87.50 97.50 92.50 100.00 100.00 

Model evidence log[f(D|M)] -1.89×103 -130.22 -1.62×103 -269.56 -391.83 
Model probability p(Mj|D,M) 0.00 1.00 0.00 0.00 0.00 

Classifier6 
Rates (%) 

Train dataset 87.50 92.50 87.50 90.00 100.00 
Test dataset 87.50 82.50 87.50 87.50 97.50 

Model evidence log[f(D|M)] -1.98×103 -1.07×103 -1.23×103 -1.40×103 -569.25 
Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier7 
Rates (%) 

Train dataset 100.00 92.50 100.00 95.00 100 
Test dataset 100.00 97.50 100.00 90.00 95.00 

Model evidence log[f(D|M)] 17.39 -1.07×103 -326.16 -1.36×103 -496.89 
Model probability p(Mj|D,M) 1.00 0.00 0.00 0.00 0.00 

Classifier8 
Rates (%) Train dataset 97.50 90.00 100.00 97.50 100 

Test dataset 97.50 87.50 97.50 82.50 95.00 
Model evidence log[f(D|M)] -2.09×103 -1.40×103 -537.75 -617.90 -380.58 

Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

 

Those results also show that both model evidence and model probability have a positive 

correlation with the rate of correct classification of the classifiers, i.e., the larger the model evidence or 

model probability, the higher the rate of correct classification of the corresponding model class. It is 

reasonable to conclude that the feature vector corresponding to the best model class is the most effective 

one for locating damage position. Thus, Bayesian model evaluation may be used as an alternative and 

effective tool for selecting feature vectors.  

 

Table 4 and 5 present the rates of correct classification, as well as log-evidences of all model 

classes of each classifier for both training and test datasets under 5% and 10% noise environments. Those 

results show that noise has considerable impact on the performance of classification models, resulting in 
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that the best model of each classifier varies in different noise levels. The best models that have larger log-

evidences for classifiers ranked from Classifier 1 to Classifier 8 are respectively M5, M5, M1, M4, M5, M1, 

M3, and M1 in 5% noise environment, while they are M4, M5, M3, M3, M2, M4, M4, and M5 in 10% noise 

situation. Although noise has evident effect on the performance of classification models, the rates of 

correct classification of the best models in different noise levels are still desirable. The lowest rate of 

correct classification for training data comes from the best model M4 for Classifier 7 in the eight 

classifiers, which is still up to 90.00%, while the lowest rate of correct classification for test data is 

produced from the model M3 for Classifier 4 and is still up to 85.00%.  

 

3.2.5 Optimal Threshold and Predicted Probability of Damage  

  The rate of correct classification of a trained classifier can be calculated using Eq. (13) with the 

optimal threshold that is determined by maximizing the correct classification rate for all known events in 

the training dataset as described in the section 2.6. As an example, Fig.8 presents the change of the rate of 

correct classification R along with different thresholds for the model M5 of Classifier1 in training dataset 

with 5% noise level. It explicitly shows that the optimal threshold of the model M5 of Classifier1 is 

δ=0.46 and the corresponding maximum rate of correct classification is R=99.97%. 

 

 

Fig.8 Variation of rate of correct classification R along with different threshold δ 
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Table 4 Evaluations of Model Classes (5% Noise) 
Model   M1 M2 M3 M4 M5 

Classifier1 Rates (%) Train dataset 82.50 90.00 90.00 85.00 97.50 
Test dataset 87.50 80.00 80.00 75.00 95.00 

Model evidence log[f(D|M)] -1.78×103 -1.15×103 -1.14×103 -2.04×103 -582.87 
Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier2 Rates (%) Train dataset 82.50 92.50 100.00 87.50 100.00 
Test dataset 75.00 87.50 95.00 87.50 97.50 

Model evidence log[f(D|M)] -1.25×103 -1.44×103 -278.78 -1.69×103 -272.92 
Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier3 Rates (%) Train dataset 92.50 87.50 87.50 90.00 85.00 
Test dataset 85.00 85.00 87.50 90.00 80.00 

Model evidence log[f(D|M)] -592.12 -1.44×103 -1.29×103 -1.12×103 -1.25×103 
Model probability p(Mj|D,M) 1.00 0.00 0.00 0.00 0.00 

Classifier4 Rates (%) Train dataset 97.50 87.50 87.50 100.00 92.50 
Test dataset 85.00 85.00 87.50 100.00 85.00 

Model evidence log[f(D|M)] -624.41 -1.40×103 -1.16×103 -231.83 -937.93 
Model probability p(Mj|D,M) 0.00 0.00 0.00 1.00 0.00 

Classifier5 Rates (%) Train dataset 85.50 87.50 87.50 100.00 100.00 
Test dataset 87.50 87.50 77.50 92.50 100.00 

Model evidence log[f(D|M)] -1.29×103 -1.32×103 -1.43×103 -554.14 -87.67 
Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier6 Rates (%) Train dataset 100.00 100.00 100.00 100.00 100.00 
Test dataset 97.50 100.00 100.00 95.00 100.00 

 Model evidence log[f(D|M)] -34.47 -152.01 -247.20 -363.53 -279.12 
Model probability p(Mj|D,M) 1.00 0.00 0.00 0.00 0.00 

Classifier7 Rates (%) Train dataset 82.50 87.50 100.00 97.50 87.50 
Test dataset 82.50 87.50 100.00 90.00 87.50 

Model evidence log[f(D|M)] -1.27×103 -1.36×103 -252.89 -863.97 -1.05×103 
Model probability p(Mj|D,M) 0.00 0.00 1.00 0.00 0.00 

Classifier8 Rates (%) Train dataset 100.00 87.50 95.00 97.50 95.00 
Test dataset 100.00 

 
80.00 92.50 85.00 87.50 

Model evidence log[f(D|M)] -215.42 -2.06×103 -509.33 -559.70 -601.74 
Model probability p(Mj|D,M) 1.00 0.00 0.00 0.00 0.00 

 

Once the optimal threshold and the rate of correct classification R of one classification model are 

determined, the probabilities of damage of a specific sub-region of the bridge pier after real barge-bridge 

collision can be determined by using Eq. (15). Table 6 presents the probabilities of damage predicted by 

the best model of each sub-region in noiseless test dataset, where Cl-Mj refers to as the model Mj of 

Classifier l. The true locations of the damage events in test dataset are also listed in the last column of 

Table 6. Besides, the optimal threshold of each classification model is given in the last row of Table 6. 

Those results show that most of the damage locations can be correctly identified in terms of the 

probability of damage in the sub-region. Among all events in test dataset, there is only one 

misclassification of damage location for the forty events, i.e. the 19th case marked with an asterisk. Thus, 

the probability of correct classification of the presented framework is up to 97.50% for the given noiseless 

test data. 
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Table 5 Evaluations of Model Classes (10% Noise) 
Model   M1 M2 M3 M4 M5 

Classifier1 Rates (%) Train 
 

87.50 90.00 90.00 100.00 95.00 
Test dataset 87.50 87.50 85.00 97.50 90.00 

Model evidence log[f(D|M)] -1.53×103 -1.45×103 -1.21×103 -534.84 -553.33 
Model probability p(Mj|D,M) 0.00 0.00 0.00 1.00 0.00 

Classifier2 Rates (%) Train 
 

87.50 90.00 92.50 87.50 97.50 
Test dataset 87.50 87.50 95.00 87.50 87.50 

Model evidence log[f(D|M)] -1.75×103 -1.57×103 -947.98 -1.14×103 -566.28 
Model probability p(Mj|D,M) 0.00 0.00 0.00 0.00 1.00 

Classifier3 Rates (%) Train 
 

87.50 87.50 100.00 90.00 90.00 
Test dataset 87.50 87.50 90.00 85.00 90.00 

Model evidence log[f(D|M)] -726.43 -864.54 -720.32 -1.29×103 -1.09×103 
Model probability p(Mj|D,M) 0.002 0.00 0.998 0.00 0.00 

Classifier4 Rates (%) Train 
 

87.50 87.50 92.50 87.50 85.00 
Test dataset 87.50 87.50 85.00 85.00 82.50 

Model evidence log[f(D|M)] -1.46×103 -1.72×103 -856.01 -1.73×103 -1.52×103 
Model probability p(Mj|D,M) 0.00 0.00 1.00 0.00 0.00 

Classifier5 Rates (%) Train 
 

87.50 100.00 87.50 85.00 87.50 
Test dataset 87.50 97.50 90.00 887.50 87.50 

Model evidence log[f(D|M)] -1.03×103 -527.88 -1.27×103 -1.69×103 -1.53×103 
Model probability p(Mj|D,M) 0.00 1.00 0.00 0.00 0.00 

Classifier6 Rates (%) Train 
 

100.00 87.50 95.00 100.00 100.00 
Test dataset 100.00 87.50 95.00 100.00 100.00 

Model evidence log[f(D|M)] -157.80 -1.34×103 -669.49 -63.64 -379.05 
Model probability p(Mj|D,M) 0.00 0.00 0.00 1.00 0.00 

Classifier7 Rates (%) Train 
 

87.50 87.50 85.00 90.00 90.00 
Test dataset 87.50 87.50 90.00 90.00 85.00 

Model evidence log[f(D|M)] -1.34×103 -1.28×103 -1.55×103 -1.14×103 -1.16×103 
Model probability p(Mj|D,M) 0.00 0.00 0.00 1.00 0.00 

Classifier8 Rates (%) Train 
 

87.50 87.50 95.00 97.50 92.50 
Test dataset 87.50 82.50 82.50 77.50 87.50 

Model evidence log[f(D|M)] -1.10×103 -1.98×103 -877.63 -897.11 -842.57 
Model probability p(Mj|D,M)  0.00 0.00 0.00 1.00 

 

The prediction probabilities of damage for noise level of 5% and 10% are presented in Table 7 and 

8, respectively. It can be noted that with the increase of noise level, the rate of correct classification is 

slightly reduced and the optimal threshold also decreases. This decreasing of optimal threshold makes 

prediction results more conservative due to increased uncertainties. The misclassification events are 

marked with superscripted asterisks at the upper right of the numbers of the events. The rate of correct 

classification of the presented framework is still up to 97.50% for the test dataset with noise level of 5% 

and 72.50% for the test dataset with the noise level of 10%.  

 

Table 6 Predicted Probabilities of Damage Locations (Noise Level 0%) 
Event 

No. 
C1- M5 C2- M1 C3- M1 C4- M5 C5- M2 C6-M5 C7- M1 C8- M5 True 

Location 
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1 100.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region1 
2 100.00 0.00 0.00 3.85 0.00 100.0 0.00 85.55 Sub-region1 
3 100.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region1 
4 100.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region1 
5 100.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region1 
6 0.00 100.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region2 
7 0.00 100.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region2 
8 0.00 100.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region2 
9 0.00 100.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region2 

10 0.00 100.00 0.00 0.00 0.00 0.23 0.00 0.00 Sub-region2 
11 0.00 0.00 100.00 0.00 0.00 0.23 0.00 0.00 Sub-region3 
12 0.00 0.00 100.00 0.00 0.00 0.23 0.00 0.00 Sub-region3 
13 0.00 0.00 100.00 0.00 100.00 0.23 0.00 0.00 Sub-region3 
14 0.00 0.00 100.00 0.00 0.00 0.23 0.00 0.00 Sub-region3 
15 0.00 0.00 100.00 0.00 0.00 0.23 0.00 0.00 Sub-region3 
16 0.00 0.00 0.00 100.00 0.00 0.23 0.00 0.00 Sub-region4 
17 0.00 0.00 0.00 100.00 0.00 0.23 0.00 0.00 Sub-region4 
18 0.00 0.00 0.00 100.00 0.00 0.23 0.00 0.00 Sub-region4 

19* 0.00 0.00 0.00 0.00 0.00 0.23 0.00 100.00 Sub-region4 
20 0.00 0.00 0.00 100.00 0.00 0.23 0.00 0.00 Sub-region4 
21 0.00 0.00 0.00 0.00 100.00 0.23 0.00 0.00 Sub-region5 
22 0.00 0.00 0.00 0.00 95.79 0.23 0.00 0.00 Sub-region5 
23 0.00 0.00 0.00 0.00 100.00 0.23 0.00 0.00 Sub-region5 
24 0.00 0.00 0.00 0.00 88.11 0.23 0.00 0.00 Sub-region5 
25 0.00 0.00 0.00 0.00 100.00 0.23 0.00 0.00 Sub-region5 
26 0.00 0.00 0.00 0.00 0.00 100.0 0.00 0.00 Sub-region6 
27 0.00 0.00 0.00 0.00 0.00 100.0 0.00 0.00 Sub-region6 
28 0.00 0.00 0.00 0.00 0.00 100.0 0.00 0.00 Sub-region6 
29 0.00 0.00 0.00 0.00 0.00 100.0 0.00 0.00 Sub-region6 
30 0.00 0.00 0.00 0.00 0.00 100.0 0.00 0.00 Sub-region6 
31 0.00 0.00 0.00 0.00 0.00 0.23 100.00 0.00 Sub-region7 
32 0.00 0.00 0.00 0.00 0.00 0.23 100.00 0.00 Sub-region7 
33 0.00 0.00 0.00 0.00 0.00 0.23 100.00 0.00 Sub-region7 
34 0.00 0.00 0.00 0.00 0.00 0.23 100.00 0.00 Sub-region7 
35 0.00 0.00 0.00 0.00 0.00 0.23 100.00 5.69 Sub-region7 
36 0.00 0.00 0.00 0.00 0.00 0.23 0.00 100.00 Sub-region8 
37 
 
 

0.00 0.00 0.00 0.00 0.00 0.23 0.00 100.00 Sub-region8 
38 0.00 0.00 0.00 0.00 0.00 0.23 0.00 100.00 Sub-region8 
39 0.00 0.00 0.00 0.00 0.00 0.23 0.00 100.00 Sub-region8 
40 0.00 0.00 0.00 0.00 0.00 0.23 0.00 99.30 Sub-region8 

R (%) 100.00 100.00 100.00 100.00 100.00 99.77 100.00 100.00  
δ 0.5 0.5 0.5 0.5 0.5 0.52 0.50 0.52  

Note: Ci refers to the i-th divided sub-region and Mj refers to the j-th classification model that is selected for the i-th sub-region.  
R is the overall correct classification rate calculated by Eq. (13) with the prediction labels of training data. 
The superscript * denotes the incorrectly located damage according to the prediction probabilities. 
 

Table 7 Predicted Probabilities of Damage Locations (Noise Level 5%) 
Event  

No. 
C1- M5 C2- M5 C3- M1 C4- M4 C5- M5 C6- M1 C7- M3 C8- M1 

True 

location 
1 100.00 0.00 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region1 
2 100.00 0.00 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region1 

3* 2.62 0.00 100.0 0.00 0.00 0.00 0.00 0.00 Sub-region1 
4 100.0 100.00 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region1 
5 100.0 0.00 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region1 
6 0.03 100.00 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region2 
7 0.03 100.00 100.0 0.00 0.00 0.00 0.00 0.00 Sub-region2 
8 0.03 66.77 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region2 
9 0.03 100.00 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region2 

10 0.03 97.66 2.73 0.00 0.00 0.00 0.00 0.00 Sub-region2 
11 0.03 0.00 100.0 0.00 0.00 0.00 0.00 0.00 Sub-region3 
12 0.03 0.00 100.0 0.00 0.00 0.00 0.00 0.00 Sub-region3 
13 0.03 0.00 83.07 0.00 0.00 0.00 0.00 0.00 Sub-region3 
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14 0.03 0.00 100.0 0.00 0.00 0.00 0.00 0.00 Sub-region3 
15 0.03 0.00 44.21 0.00 0.00 0.00 0.00 0.00 Sub-region3 
16 0.03 0.00 2.73 100.00 0.00 0.00 0.00 0.00 Sub-region4 
17 0.03 0.00 2.73 100.00 0.00 0.00 0.00 0.00 Sub-region4 
18 0.03 0.00 2.73 100.00 0.00 0.00 0.00 0.00 Sub-region4 
19 0.03 0.00 2.73 100.00 0.00 0.00 0.00 0.00 Sub-region4 
20 0.03 0.00 2.73 100.00 0.00 0.00 0.00 0.00 Sub-region4 
21 100.0 0.00 2.73 0.00 100.00 0.00 0.00 0.00 Sub-region5 
22 0.03 3.99 2.73 0.00 100.00 0.00 0.00 0.00 Sub-region5 
23 0.03 0.00 100.0 0.00 100.00 100.00 0.00 0.00 Sub-region5 
24 0.03 0.00 100.0 0.00 100.00 0.00 0.00 0.00 Sub-region5 
25 0.03 0.00 100.00 0.00 99.91 47.91 0.00 0.00 Sub-region5 
26 0.03 0.00 2.73 0.00 0.00 100.00 0.00 0.00 Sub-region6 
27 0.03 0.00 2.73 0.00 0.00 100.00 0.00 0.00 Sub-region6 
28 0.03 0.00 2.73 0.00 0.00 100.00 0.00 0.00 Sub-region6 
29 0.03 0.00 2.73 0.00 0.00 100.00 0.00 0.00 Sub-region6 
30 0.03 0.00 2.73 0.00 0.00 100.00 0.00 0.00 Sub-region6 
31 0.03 0.00 2.73 0.00 0.00 0.00 100.00 0.00 Sub-region7 
32 0.03 0.00 2.73 0.00 0.00 0.00 100.00 0.00 Sub-region7 
33 0.03 0.00 2.73 0.00 0.00 0.00 100.00 0.00 Sub-region7 
34 0.03 0.00 2.73 0.00 0.00 0.00 100.00 0.00 Sub-region7 
35 36.51 10.32 2.73 0.00 0.00 0.00 100.00 0.00 Sub-region7 
36 5.66 0.00 2.73 0.00 0.00 0.00 0.00 100.00 Sub-region8 
37 

 

 

0.03 0.00 2.73 29.23 0.00 0.00 0.00 100.00 Sub-region8 
38 0.03 0.00 2.73 0.00 0.00 0.00 0.00 100.00 Sub-region8 
39 0.03 0.00 2.73 0.00 0.00 0.00 0.00 100.00 Sub-region8 
40 0.03 0.00 2.73 0.00 0.00 0.00 0.00 100.00 Sub-region8 

R (%) 99.97 100.00 97.27 100.00 100.00 100.00 100.00 100.00  
δ 0.46 0.48 0.37 0.50 0.40 0.45 0.50 0.29  

Note: R is the overall correct classification rate calculated by Eq. (13) with the prediction labels of training data. 
The superscript * denotes the incorrectly located damage according to the prediction probabilities.  
 

 

 

 

 

Table 8 Predicted Probabilities of Damage Locations (Noise Level 10%) 
Event 

No. 

C1- 

M4 
C2- M5 

C3- 

M3 
C4- M3 

C5- 

M2 

C6- 

M4 
C7- M4 C8- M5 

True 

location 
1 97.49 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region1 
2 100.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region1 
3 100.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region1 
4 100.00 0.14 0.00 3.07 4.38 0.00 4.58 5.0 Sub-region1 
5 100.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region1 
6 0.00 99.99 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region2 
7 0.00 100.0 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region2 

8* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region2 
9 0.00 100.0 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region2 

10* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region2 
11 0.00 0.14 100.00 3.07 0.00 0.00 20.83 5.0 Sub-region3 

12* 0.00 100.0 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region3 
13 0.00 0.14 100.00 3.07 0.00 0.00 100.0 5.0 Sub-region3 
14 0.00 0.14 100.00 3.07 0.00 0.00 4.58 5.0 Sub-region3 
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15 0.00 0.14 100.00 3.07 0.00 0.00 4.58 5.0 Sub-region3 
16 0.00 0.14 0.00 100.0 0.00 0.00 4.58 5.0 Sub-region4 

17* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 100.0 Sub-region4 
18 0.00 0.14 0.00 100.0 0.00 0.00 4.58 5.0 Sub-region4 

19* 0.00 99.93 100.00 3.07 0.00 0.00 4.58 5.0 Sub-region4 
20* 0.00 100.0 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region4 
21 0.00 0.14 0.00 3.07 100.00 0.00 4.58 5.0 Sub-region5 
22 0.00 0.14 0.00 3.07 100.00 0.00 4.58 5.0 Sub-region5 
23 0.00 0.14 0.00 3.07 100.00 0.00 4.58 5.0 Sub-region5 
24 16.01 0.14 0.00 3.07 100.00 0.00 4.58 5.0 Sub-region5 
25 0.00 0.14 100.00 4.4 99.94 0.00 4.58 5.0 Sub-region5 
26 19.31 0.14 0.00 3.07 0.00 100.00 4.58 5.0 Sub-region6 
27 0.00 0.14 0.00 3.07 0.00 100.00 4.58 5.0 Sub-region6 
28 0.00 0.14 0.00 3.07 0.00 100.00 4.58 5.0 Sub-region6 
29 0.00 0.14 0.00 99.99 0.00 100.00 4.58 5.0 Sub-region6 
30 0.00 0.14 0.00 100.0 0.00 100.00 4.58 5.0 Sub-region6 

31* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region7 
32* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region7 
33 0.00 0.14 0.00 3.07 0.00 0.00 10.04 5.0 Sub-region7 
34 0.00 0.14 0.00 3.07 0.00 0.00 100.0 5.0 Sub-region7 
35 0.00 0.14 0.00 3.07 0.00 0.00 100.0 93.46 Sub-region7 

36* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region8 
37 

 

 

0.00 27.97 0.00 100.0 0.00 0.00 4.58 100.0 Sub-region8 
38* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region8 
39 0.00 0.14 100.00 3.07 0.00 0.00 4.58 100.0 Sub-region8 

40* 0.00 0.14 0.00 3.07 0.00 0.00 4.58 5.0 Sub-region8 
R (%) 100.00 99.86 100.00 96.93 100.00 100.00 95.42 95.00  

δ 0.44 0.45 0.49 0.35 0.41 0.36 0.45 0.49  

Note: R is the overall correct classification rate calculated by Eq. (13) with the prediction labels of training data. 
The superscript * denotes the incorrectly located damage according to the prediction probabilities. 
 

 
4. Impacts/Benefits of Implementation 

4.1 Practical Application  

Once a barge-bridge collision event happens, field dynamic measurements can be collected from 

the collided bridge structure with the sensor network.  The best feature vectors are then extracted and 

input into the best classification models of each of the trained classifiers. With the identified threshold of 

each classifier, the prediction probability of the damage locating in each of the sub-regions can be 

determined according to Eq. (15).  In this numerical simulation, measurements from the prototype of 

bridge after a real barge-bridge collision incident can only be simulated by using the bridge structural 

model, and can be taken from any one event in the test dataset presented in the proceeding. Thus, 

predicted probabilities of damage occurring in each sub-region from implementing the presented 

framework can be referred to results tabulated in Table 7 or 8. The evaluation of those results through 

comparison with the damage scenarios can also be found in those tables as discussed in the above sections.  
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4.2 Discussion and Limitations and Future Research Directions  

The presented framework is based on the elastic structural model to generate the modal properties 

of the considered structure at different damage extent for training probabilistic classification models.  In 

the structural model, the damage extent is represented by different reduction of elastic stiffness of a 

specific sub-region. In real world, damage may cause local nonlinear force-deformation relation in the 

damaged sub-regions. However, the amplitude of real measured structure vibrations is small particularly 

under normal ambient excitations. Thus, it can be reasonably assumed that the force-deformation 

relationship of the damaged sub-region can be approximately represented by the linear elastic behavior 

with reduced elastic stiffness.  

 

Even though training data are generated from numerical simulation by using a structural model, 

rather than field measurements of historically known real damaged events from the prototype structure in 

the past, application of trained classifier for identifying probability of damage is not essentially different 

from other model-based damage identification algorithms. All those algorithms identify damage through 

determining damage parameters of a structure model by matching simulation results with field 

measurements. Thus, their identified results are impacted by accuracy of the structural model and field 

measurements. Within the presented probabilistic-based framework, uncertainties associated with the 

structural model and field measurements can be better quantified in the results in terms of probability of 

damage.  However, it should be noted that in the illustration and examination of the presented framework, 

the field measurements from the structure after damage event are simulated based on the structural model 

with added noise representing measurement errors.   Thus, the future research may further examine and 

verify the presented framework by using real measurements from lab experiment or prototype structure 

site.         
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With focusing on illustration of the presented framework, the optimal sensor deployment for 

collecting effective vibration measurements was not considered in the study. The selected sensor locations 

and its measured directions, which were represented by selected   DOFs in the numerical simulation, may 

not capture the most effective features of damage locations after barge-bridge collisions. Thus, the 

optimization of sensor deployment has to be particularly studied when the presented framework is applied 

for damage location of a specific structure.  

 
Even though the numerical simulation only illustrates identification of potential damage locations 

in one pier of a bridge due to barge-bridge collision, the proposed framework actually can be extended to 

locate other types of structural damage in other regions of civil engineering structural members. Besides, 

the numerical simulation only demonstrates the scenario of damage occurrence in a single sub-region. 

However, actual damage may synchronously appear in several adjacent sub-regions or in the junction of 

several sub-regions in a given division of sub-regions. For dealing with such situations in practical 

application, multi-layer and hierarchical divisions of a specific region at different grid levels and shifted 

locations can be established. As a result, damage occurring in several adjacent sub-regions or the junction 

of several sub-regions in a given division sub-regions could be located within a specific sub-region in the 

other set of divisions of sub-regions. Then, the framework can be implemented for all sub-regions of all 

considered different sets of division of sub-regions.  The damage location can be identified at the sub-

region with the largest probability of damage among all considered sub-regions.   

 

The numerical simulation further indicates that more attention should be paid to determine the 

range or space of unknown parameters of classification models for their prior PDF samples. Although 

results obtained from the LDA method [24] can be taken as the mean values for samples of parameters of 

classification model derived from their prior PDF for Bayesian inference with the TMCMC sampling [18-

19], appropriate range or space of samples of the prior PDF of those unknown parameters has to be 

determined by judgment. Inappropriately estimated range of those samples of the prior PDF of those 
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unknown parameters may result in samples of the posterior PDF of those parameters outside of their 

space, or concentrated at the boundary of their space (as illustrated in Fig.5). The larger estimated space 

of samples of the prior PDF of unknown parameters may make adequate exploration of the space of the 

possible regions of high likelihood of those unknown parameters and avoid the aforementioned problems. 

However, it would inversely increase computational burdens in the process of TMCMC simulation. 

Therefore, a more appropriate method to determine the range of prior space is still needed to be further 

explored in future research. 

 

5. Recommendations and Conclusions 

This report presents a novel framework for rapidly identifying potential damage locations using 

vibration measurements from a structure after damage potentially occurs. With the framework, the 

probabilities of damage occurrence in different sub-regions of a structural system can be determined for 

providing the guide for further assessment and inspection. The implementation and applicability of the 

presented framework are illustrated and examined through simulation of identifying damage locations of 

a bridge pier after barge-bridge collision events. The novel characteristics of the presented framework lie 

in that intensively computational simulations of dynamic responses of a structure at different damage 

levels are conducted prior to damage events to generate data for training the probabilistic classifier based 

on the binary logistic model. Thus, the trained classifier can be used to quickly identify the probabilities 

of damage occurrence in specific regions based on vibration measurements, leading to significant 

reduction of computing time in damage identification processes in comparison with traditional 

probabilistic-based damage identification algorithms. 

 

Within the presented framework, feature vectors containing sensitive information on possible 

damage and its locations are extracted from the change of simulated modal properties caused by damage 

using the Principle Component Analysis. The probabilistic-based logistic model is trained as a classifier 
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with the extracted feature vectors and labels of known events through Bayesian inference with 

Transitional Markov Chain Monte Carlo simulation. The most effective features can be selected in terms 

of model evidence through Bayesian model selection for effective classification. The optimal threshold 

for distinguishing damaged and undamaged scenarios from the prediction label is proposed through 

maximizing the rate of correct classification of the classifier for all known damage events in training 

dataset. Uncertainties associated with available measurements and classifier models are quantified in 

terms of the probability of damage occurrence in a specified sub-region.     

 

Results from numerical simulation indicate that the presented framework can rapidly determine 

the probabilities of structural damage locations of a measured event in less than one second. Even though 

levels of measurement errors or noise have significant impacts on the performances of classification 

models, the rate of correct classification is larger than 97.5% for all events in test dataset with 

measurement errors up to 5%, and larger than 72.50% with measurement errors up to 10%. The model 

evidences obtained from Bayesian inference positively correlate with model performances in terms of the 

rate of correct classification and can be used to determine effective features for a classifier. The optimal 

threshold for distinguishing between damaged and undamaged scenarios from classification labels has a 

decreasing tendency as the noise level increasing, which makes the classification results more 

conservative. The future research may focus on using real measurements from lab experiment or 

prototype structure site to further examine the presented framework.         
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