<table>
<thead>
<tr>
<th>MarTREC STAFF</th>
<th>MBTC ADVISORY BOARD</th>
</tr>
</thead>
</table>
| Heather Nachtmann, Ph.D.
University of Arkansas
Director | Mr. Harold D. Beaver, P.E.
District Engineer - Retired, Arkansas State Highway and Transportation Department |
| Kevin D. Hall, Ph.D., P.E.
University of Arkansas
Executive Director | Mr. Scott Bennett, P.E.
Director, Arkansas State Highway and Transportation Department |
| Stacy Williams, Ph.D., P.E.
University of Arkansas
Center for Training Transportation Professionals
Director | Ms. Rebecca Brewster
President and Chief Operating Officer, American Transportation Research Institute |
| Amy M. Shell, M.S.
University of Arkansas
Center Coordinator | Mr. Jack E. Buffington, P.E., RADM, USN (Ret.)
Director - Retired, MBTC, University of Arkansas |
| John L. Renne, Ph.D.
University of New Orleans
Site Director | Rear Admiral Kevin Cook
Commander, Eighth Coast Guard District, U.S. Coast Guard |
| Feng Wang, Ph.D., P.E.
Jackson State University
Site Director | Mr. Dan Flowers, P.E.
Director - Retired, Arkansas State Highway and Transportation Department |
| Brian Wolshon, Ph.D., P.E.
Louisiana State University
Site Director | Ms. Ann Gilbert
Executive Director, Arkansas Transit Association |
| | Dr. Randy Hathaway, P.E.
Deputy District Engineer, U.S. Army Corps of Engineers (USACE) |
| | Mr. Gene Higginbotham
Executive Director, Arkansas Waterways Commission |
| | Mr. Gary W. Hunt
Vice President, ABF Freight System, Inc. |
| | Mr. Michael R. Johnson, P.E., RADM, CEC, USN (Ret.)
Associate Vice Chancellor for Facilities, University of Arkansas |
| | Mr. Jeff Lillycrop
Technical Director, USACE ERDC Civil Works |
| | Dr. Kenneth Ned Mitchell
Research Civil Engineer, USACE Research and Development Center |
| | Ms. Shannon Samples Newton
President, Arkansas Trucking Association |
| | Ms. Sandra Otto
Division Administrator, USDOT Federal Highway Administration |
| | Dr. Craig Philip
CEO - Retired, Ingram Barge Company |
| | Mr. Paul Revis, P.E.
Executive Director - Retired, Ouachita River Valley Association |
| | Mr. Michael J. Right
Vice President of Public Affairs, American Automobile Association |
| | Ms. Barbara Sisson, P.E., SES
Assistant Chief, Army Reserve |
| | Mr. Gary Whicker
Senior Vice President for Engineering Services, J.B. Hunt Transport, Inc. |

CONTACT INFO

4190 Bell Engineering Center
University of Arkansas
Fayetteville, Arkansas 72701
Phone: 479.575.6021
Email: martrec@uark.edu

Cover photo courtesy of AHTD
MESSAGE FROM THE DIRECTOR

MarTREC’s vision is to be recognized as the nation’s premier source for expertise on maritime and multimodal transportation research and education. We are thrilled that Rear Admiral Kevin Cook, Commander of the U.S. Coast Guard’s Eighth District; Mr. Jeff Lillycrop, Technical Director of USACE ERDC Civil Works; Dr. Kenneth Ned Mitchell, Research Civil Engineer of the USACE ERDC’s Coastal and Hydraulics Laboratory; Dr. Craig Philip, CEO - Retired of Ingram Barge Company, and Ms. Shannon Samples Newton, President of the Arkansas Trucking Association have joined our Advisory Board to help us achieve that vision. MarTREC leaders and researchers are working to maximize the effectiveness and efficiency of the maritime and multimodal transportation system by conducting translational research to benefit the economic, reliability, safety, and environmental aspects of the system. I hope you enjoy your first look into the valuable contributions being made at the University of Arkansas and our partners at Jackson State University, Louisiana State University, and the University of New Orleans.

TABLE OF CONTENTS

Message from the Director 1
MarTREC Overview 2
MarTREC Research Projects 4
In the News 11
CONSORTIUM
Competitively funded in September 2013 through Map-21, the University of Arkansas, located in Fayetteville, AR, was awarded a Tier 1 Center entitled the Maritime Transportation Research & Education Center that focuses on building Economic Competitiveness. Our consortium consists of the University of Arkansas, Fayetteville, AR; Jackson State University (JSU), Jackson, MS; Louisiana State University, Baton Rouge, LA; and University of New Orleans, New Orleans, LA. JSU is a Minority Serving Institution and AR, LA, and MS are EPSCOR States collaborating to meet the EPSCOR goal of stimulating competitive research.

VISION
MarTREC’s theme is building economic competitiveness through efficient, resilient, and sustainable maritime and multimodal transportation systems. Our vision is to be recognized as the Nation’s premier source for expertise on maritime and multimodal transportation research and education. Our MarTREC consortium was formed based on nationally-renowned expertise supporting the MarTREC theme, strategic location along a major navigable river or in a coastal area, and dedication to transferrable research and inclusive education and workforce development.

RESEARCH
MarTREC will conduct research activities in three research domains: 1) Maritime and Multimodal Logistics Management, 2) Building Resilient and Sustainable Multimodal Infrastructure, and 3) Livability and Emergency Management of Coastal and River Valley Communities.
EDUCATION & WORKFORCE DEVELOPMENT
MarTREC is dedicated to transportation education and workforce development through the conduct of educational activities in Multimodal and Multidisciplinary Transportation Educational Resource Development, Transportation Professional Development and Training Programs, and Future Transportation Workforce Diversity through K-12 Outreach which build upon existing programs at the MarTREC consortium institutions.

The MarTREC consortium is extensively networked through existing collaborative partnerships. These established partnerships will support MarTREC’s technology transfer activities in Research Dissemination, Educational and Workforce Outreach, Information Exchange Mechanisms, and Technology Innovation. MarTREC is committed to broadening participation and increasing diversity in transportation. Due to dedicated leadership, institutional demographics, and existing programs, MarTREC is ideally situated to support this cause. It is anticipated that transportation agencies and private industry will be increasingly challenged to find highly-qualified and technically-trained employees in the coming years due to increased retirement rates, fewer entrants into the transportation field, and increased competition for skilled labor, engineers, and planners. The USDOT-funded 21st Century Workforce Development Summit expressed concern that transportation agencies could face a workforce loss up to 50% by 2020. MarTREC is dedicated to transportation education and workforce development.
MarTREC RESEARCH PROJECTS

MARITIME AND MULTIMODAL LOGISTICS MANAGEMENT

Dynamic Decision Modeling for Inland Waterway Disruptions
Shengfan Zhang, Ph.D.
Heather Nachtmann, Ph.D.
University of Arkansas

The inland waterway system is a major component of the U.S. transportation system. Disruption on the inland waterway system can have widespread economic and societal impacts, and their consequences can be significant. However, the uncertainty associated with the disruptive events, such as extreme weather conditions, have made it difficult to determine whether it is optimal to stay on the water and wait for the locked traffic to clear, or it is more economical to redirect to rail or freight transportation. In order to facilitate decision making in the event of waterway closure under uncertainty, this research will develop a dynamic multi-criteria decision framework that can be used to find a timely and optimal solution for the greatest overall societal benefits. The overall goal of this research is to facilitate decision making in the event of inland waterway disruptions considering uncertainty associated with the disruptive events. To reach this goal, our research objectives are: 1) to understand the history of disruptive events for inland waterways, their consequences, and current practices in the event of waterway closure, 2) to characterize the risks and uncertainty associated with inland waterway disruptions, 3) to develop a multi-criteria Markov decision process model that incorporates uncertainty and considers objectives from all stakeholders, and 4) to design a user-friendly post disruption decision support tool that can assist decision making for practitioners.

Efficient Dredging Strategies for Improving Transportation Infrastructure Resilience
Kelly Sullivan, Ph.D.
University of Arkansas

The viability of the marine highway system as efficient means of transportation is highly dependent upon weather patterns, which vary widely from year to year. Droughts can render waterways impassable to large ships, forcing distributors to either rely on other, more expensive, transportation modes to satisfy their transportation needs, or take action to restore waterway navigability. One way to accomplish this is by dredging, or excavating, certain stretches of waterways. This project will develop mathematical modeling approaches to explore cost efficient dredging strategies for hardening inland waterway infrastructure against the possible impacts of drought.
events. The research objectives are: 1) to develop mathematical models to assess the cost (to distributors using the inland waterway system) of transporting multiple products from origin(s) to destination(s) when the channel depths of all waterway segments are fixed, 2) to develop a static (i.e., not evolving over time) model for selecting dredge projects with the aim of answering the following question: Given resource limitations what we know about current channel depths, which subset of dredge projects should be executed in the present?, and 3) extend the models of the previous objective to schedule dredge projects dynamically over time as new information about hydrologic conditions becomes known.

Supporting Secure and Resilient Inland Waterways
Heather Nachtmann, Ph.D.
Justin Chimka, Ph.D.
University of Arkansas

To mitigate inland waterway disruption impacts, we developed the cargo prioritization and terminal allocation problem (CPTAP) to minimize the total value loss of disrupted barge cargoes. CPTAP is formulated as a nonlinear binary integer program, and problems of realistic size can be efficiently and effectively solved with a heuristic approach. The final solution identifies an accessible alternative terminal for each disrupted barge and the prioritized offload turn that each barge takes at its assigned terminal. Implementation of CPTAP results in reduced cargo value loss and response time when compared to a naïve minimize distance approach. This project

Economic Impacts of Lock Usage and Unavailability
Justin R. Chimka, Ph.D.
University of Arkansas

Freight statistics should provide an objective baseline for transportation policy decisions, and national economic benefits of maritime transport necessitate improving inland waterways infrastructure. Proposed work includes consolidating and learning from Lock Use, Performance, and Characteristics data collected by the U.S. Army Corps of Engineers (USACE) and published by the Navigation Data Center. The objective is to estimate statistical models of annual tons locked by commodity group and lock, as a function of lock usage and unavailability (1993-2013), to discover knowledge of relationships between system disruption and economic consequences. This research will estimate annual tons locked by commodity group and lock, as a function of lock usage and unavailability (1993-2013). Usage data include average delay and processing time, barges empty and loaded, flotillas and vessels, lockages, and percent vessels delayed. Unavailability data include scheduled and unscheduled lock unavailabilities, and unavailable times. Estimation would require consolidation and statistical models of Lock Use, Performance, and Characteristics published by the USACE Navigation Data Center. Results would include effects of lock usage and unavailability on tons locked by commodity group (coal, petroleum, chemicals, crude materials, primary manufactured goods, food, manufactured equipment, waste material).
extends our earlier work through CPTAP model enhancement, expanded application, and improved solution approach development. The overall research objective is to provide timely knowledge and awareness of what cargoes should be prioritized for offloading during disruption response and what infrastructure exhibits low resiliency in terms of modal capacity to potential attacks or natural disasters against inland waterway transportation systems. Ongoing work has developed a systematic literature review of cargo prioritization methods and factors and an optimization approach to CPTAP to provide decision support for disruption response stakeholders in order to minimize the total value loss of cargo disruptions on the inland waterways.

Regional Economic Impact Study of the McClellan-Kerr Arkansas River Navigation System
Heather Nachtmann, Ph.D.
University of Arkansas

Funded by the Arkansas Economic Development Commission, this project is based on the theory regional and short line railroads are underutilized, and a key to unlocking greater economic value in Arkansas is additional TransLoad Facilities that enable Multimodal Transport. Long term goals related to the project include determining what should be the locations and capabilities of additional facilities, and producing a guidebook for people interested in developing a TransLoad Facility.

Multimodal Transport and TransLoad Facilities in Arkansas
Justin R. Chimka, Ph.D.
University of Arkansas

Forty-one states in the United States are connected via navigable inland waterways. The navigable inland waterways provide a low-cost, reliable, and environmental friendly transportation system. Research shows that the navigable inland waterways system has a significant impact on gross output, gross domestic product, employee earnings, and employment. The McClellan-Kerr Arkansas River Navigation System (MKARNS) contains 440 miles of waterway and is a crucial part of the United States’ transportation system. The MKARNS connects strategically the heartland of the United States with the rest of the world. Thus, this project is investigating the economic impacts of the MKARNS to enhance the understanding of its importance and potential outcomes of a disruption. The findings of this study may be valuable for future investment decisions into the MKARNS which can result in sustainable growth in the regional economy.
BUILDING RESILIENT AND SUSTAINABLE MULTIMODAL INFRASTRUCTURE

Optimal Dredge Fleet Scheduling within Environmental Work Windows
Chase Rainwater, Ph.D.
Heather Nachtmann, Ph.D.
University of Arkansas

The USACE annually dredges hundreds of navigation projects through its fleet of government dredges and individual contracts with private industry. This project seeks to examine the decision of allocating dredge resources to projects system-wide under necessary constraints including environmental restrictions concerning when dredging can take place due to migration patterns of turtles, birds, fish, and other wildlife, dredge equipment resource availability, and varying equipment productivity rates that affect project completion times. Building on previous research with USACE, this project is specifically motivated by the need to apply recently developed scheduling optimization tools to provide comprehensive sensitivity analysis regarding the impact of varying dredge job sizes, available dredge equipment and the size of environmental windows. Beyond sensitivity analysis, this project will expand the previously developed optimization tools to allow for multiple dredge resources to work on a single job, environmental windows to be dredge specific and environmental windows to serve as soft constraints. Finally, while previous work has assumed that the demand for dredging, availability of dredge equipment and length of environmental windows are known with certainty, this research will explore how dredge planning is impacted when these factors are treated as stochastic components. The goal of this research is to offer a robust decision tool that can be used by USACE to determine the appropriate dredge fleet and the optimal operations associated with that fleet for a given set of jobs.

Rapid and Non-Destructive Assessment of Levees for Strength and Liquefaction Resistance
Clinton Wood, Ph.D.
Michelle Bernhardt, Ph.D.
University of Arkansas

In 2013, the American Society of Civil Engineers (ASCE) gave the levee system in the United States an overall rating of D-. This rating is based in part on information from the National Levee Database which is comprised of approximately 14,700 miles of levees operated by the USACE. These levees are more than 55 years old on average and were originally designed to protect farmland from flooding; however, due to urban sprawl and changes in land use, over 14 million people now live or work behind these structures. To prevent failures in these structures, ASCE estimates more than $100 billion is needed to repair and rehabilitate the levee system. However, only a small portion of that money is currently allocated by the federal government. Therefore, the available money must be used to repair the most critical levees first. The goal of this research is to develop a rapid, non-destructive geophysical testing program and probabilistic framework that can be used to proactively evaluate levees. A series of geophysical field trials will be conducted to determine the most accurate and efficient methods and the best parameters for detecting various features or defects within levees.

Photo courtesy of USACE
In-Situ Monitoring and Assessment of Post Barge-Bridge Collision Damage for Minimizing Traffic Delay and Detour
Wei Zheng, Ph.D., P.E.,
Jackson State University

Bridges over major navigation waterways often suffer from barge collisions. After collisions, both bridges and navigation waterways are usually closed to traffic for assessing the collision damage of bridge structures, leading to substantial traffic delay or detour. The ultimate goal of this project is to improve the mobility and emergency preparedness for the transportation systems of both highways and navigation waterways through implementing Intelligent Transportation Systems. This research aims to develop an efficient in-situ monitoring and data processing scheme for assisting bridge professionals to reliably assess the barge-bridge collision damage and make prompt and informative decisions related to bridge and navigation operations. The project will explore the efficient sensor deployment that can unitize low-cost acceleration sensors to effectively capture the useful information on collision damages, and effective data processing scheme that integrates Bayesian probabilistic inference and in-situ sensor data to assess collision damages and their uncertainties, and validate their effectiveness through extensive simulated tests.

Exploration of Novel Multifunctional Open Graded Friction Courses for In-situ Highway Runoff Treatment
Yadong Li, Ph.D.
Lin Li, Ph.D.
Jackson State University

This study is aimed at exploring a new material for in-situ treatment of highway storm water runoffs to prevent pollution of water bodies. Storm water runoffs from highways contain both organic and inorganic contaminants of which large portions are eventually conveyed to the nearby water bodies such as rivers and lakes. The U.S. Department of Transportation is subjected to increasing pressures from water quality regulatory agencies for the control and treatment of highway storm water runoffs. There is an urgent need to alleviate the effects of highway runoffs. Copper and zinc have been identified to be the major inorganic contaminants in highway runoffs. The goal of this study is to explore a Multifunctional Open Graded Friction Courses by adding innovative additives to Open Graded Friction Courses to create a new material that has high heavy metal removal capacities. A series of batch experiments will be conducted to optimize the material composition and fabrication process and to determine its adsorption capacities for heavy metal removals. Technical guidance for highway application of this material for...
effective management of highway storm water runoffs will be produced.

LNG Bunkering for Marine Vessels at the Port of New Orleans: Siting and Facility Components

Bethany Stich, Ph.D.
James R. Amdal, Sr.
University of New Orleans

The Port of New Orleans has expressed interest in investigating the physical, operational and safety issues associated with an LNG Bunkering Facility sited within their jurisdiction. The University of New Orleans Transportation Institute (UNOTI) is conducting a best-practices assessment based on the most current research documents and discussions with maritime leaders in the Greater New Orleans area. Reports reviewed include the recently released ABS authored “Bunkering of Liquefied Natural Gas-fueled Marine Vessels in North America” as well an on-going professional journals and related publications including a series of White Papers by FC Gas Intelligence and related resources. UNOTI is also conducting on-site inspections of the Harvey Gulf LNG Bunkering station under construction at Port Fourchon and is planning on interviewing key-decision-makers who participated in the permitting of this facility.

Identifying High-Risk Roadways for Infrastructure Investment Using Naturalistic Driving Data

Brain Wolshon, Ph.D., P.E., P.T.O.E.
Louisiana State University

The goal of this research is to identify high-risk roadway segments for capital investment to mitigate future increases in crash rates. This is achieved by establishing a statistical relationship between surrogate crash measures and roadway segments with historically high crash rates. This research may lead to identifying locations with relatively low crash rates now, but potentially could increase in the future. These findings could potentially reduce the loss of life and property of the traveling public as well as identify roadway segments in need of targeted capital investment to provide a sustainable highway infrastructure for multimodal use.

LIVABILITY AND EMERGENCY MANAGEMENT OF COASTAL AND RIVER VALLEY COMMUNITIES

Development of a Large-Scale Traffic Simulation Model for Hurricane Evacuation of Mississippi Coastal Region

Feng Wang, Ph.D., P.E.
Jackson State University

Hurricanes are one of the most catastrophic events resulting in severe consequences including loss of life and property damage. The magnitude of devastation was evident in the hurricanes Katrina and Rita in the Gulf coast. The Mississippi Gulf coast region generally refers to the Gulfport-Biloxi-Pascagoula Area that consists of the Gulfport-Biloxi Metropolitan Area and the Pascagoula Metropolitan Area, including five counties and a joint population of about 400 thousand residents and 150 thousand families. The casino industry and tourism in the region also attract

Pgs. 8-9 river photos courtesy of AHTD
thousands of tourists and travelers from everywhere. Emergency management teams play a huge role in safeguarding the lives of people in endangered areas by evacuating them to safer locations as efficiently as possible. An evacuation plan is an essential component of an emergency plan. This research will study the effect of applying various traffic control plans (TCP) to the Mississippi coast region to provide the most efficient movement of vehicles out of the region during a hurricane evacuation.

Roadway Sign Recognition During Computer Testing versus Driving Simulator Performance for Stroke and Stroke with Aphasia Groups
Neila Donovan, Ph.D.
Louisiana State University

The literature has shown that stroke may impact pre-requisite skills needed to drive including physical mobility, sensorimotor, cognition, communication, visual perception, and visual processing. No known studies have evaluated the driving performance in a driving simulator of people with stroke+aphasia, or compared their performance to stroke only survivors or healthy controls, we expect the results of this study to add new information to the literature in at least 2 areas: 1) preliminary identification of existing differences among three groups, a control group (CON) a stroke only group (SG) and a stroke+aphasia group (AG) on computer-based road sign recognition tasks; and 2) preliminary identification of existing differences among the same three groups on driving performance variables under different driving conditions in a driving simulator.

National Inventory and Analysis of Transit Oriented Development in Proximity to Coasts and Port Facilities
John L. Renne, Ph.D., AICP
University of New Orleans

There is often a tension between the development of mixed-use transit oriented developments (TODs) and heavy industry near coastal areas, major rivers and near port facilities. This study will quantify and examine the number of jobs and residents in station areas near costal areas, major rivers and near port facilities across the United States. The study will also forecast future development and job potential of underbuilt station areas, which could become TODs over the next several decades. The National TOD Database will be combined with the National Transportation Atlas Database, coastline data from the Census and data on major rivers from ArcGIS. The GIS analysis will isolate all rail stations located within a half-mile, 1-mile and 3-miles of coastlines, major rivers and ports. Once identified, a typology of station areas will be applied based on Renne and Ewing 2013, which outlines a method for determining if a station area is a TOD, Hybrid or Transit Adjacent Development (TAD) (which is a station area that is low-density and automobile focused). The study will identify the number and type of jobs located in all types of stations and compare and contrast by typology. It will also calculate the number of people and households as well provide a snapshot about commuting behavior, vehicle ownership, housing tenure, and socio-economics of residents. The study will also forecast future development potential by looking at several build-out scenarios to turn TADs and Hybrids into TODs.
The National Evacuation Conference was held in New Orleans in January 2014 at the Ernest N. Morial Convention Center. The conference planning committee included MarTREC Site Directors Dr. John Renne of UNO and Dr. Brian Wolshon of LSU. “This conference brought together urban planning, disaster mitigation, and resiliency leaders from the University of New Orleans with national and international experts on disaster and evacuation planning, to foster an interdisciplinary exchange of ideas about evacuation issues, in particular mass evacuations prompted by disasters. Topics of discussion included lessons learned from Superstorm Sandy and the Boston Marathon Bombings, as well as evacuation planning around nuclear power plants and for carless and vulnerable populations. Keynote speakers included Tom Ridge, the nation’s first secretary of the U.S. Department of Homeland Security and former governor of Pennsylvania, FEMA Deputy Administrator Richard Serino, and retired U.S. Army General Russell Honore, who served as commander of Joint Task Force Katrina responsible for coordinating military relief efforts for Hurricane Katrina-affected areas across the Gulf Coast.” (transportation.uno.edu, 2014)

In July 2014, MarTREC Site Director Dr. John Renne of UNO participated in a roundtable led by the Secretary of the U.S. Department of Transportation Anthony Foxx and New Orleans Mayor Mitch Landrieu to commemorate the 50th anniversary of the Civil Rights Bill. “Transportation in America still has a long way to go in promoting equality,” Dr. Renne said. “We still do a poor job in connecting affordable housing to jobs, shopping and services. We are a car dependent nation, which has disparate impacts to African Americans in many communities. While solving these problems can sometimes be controversial, we owe gratitude to the generations before us that sacrificed so much to enable us to move towards a more inclusive society where we can have an open debate across race, gender and culture.” (transportation.uno.edu, 2014)

The Institute for Multimodal Transportation (IMTrans) at Jackson State University (JSU) hosted a three-week, residential Mississippi Summer Transportation Institute (MSTI) Program starting Sunday, June 8, 2014 through Saturday, June 28, 2014. The Intermodal Advisory Committee (IAC) recruits up to 25 high school participants entering grades 9th to 12th for a residential program at JSU. This three-week intense program will be an excellent learning opportunity for youth in public and private high schools across the state of Mississippi.
Five seniors from the Department of Civil Engineering have received engineering scholarships from the Arkansas Good Roads Transportation Council for the 2014-15 academic year. The Council creates awareness of the many important benefits of improving roads, bridges, and other key transportation infrastructure in Arkansas by researching, evaluating and publicizing data focused on transportation issues. The organization grants scholarships of $5000 for outstanding civil engineering students in their junior year or senior year of college. Recipients of the engineering scholarship commit to work in the transportation field in Arkansas for a minimum of one year after graduation. This year, all five recipients of the scholarship were University of Arkansas students. The recipients were Beth Allen, Tanner Clement, Ross Helliker, Taylor Lindley and Benjamin Whatley.

On November 14, 2013, The Dan Flowers Distinguished Lecture Series hosted Dr. George Tchobanoglous, Ph.D., P.E., NAE, Professor Emeritus UC-Davis lectured on Direct Potable Reuse: A Future Imperative. Dr. Tchobanoglous discussed how population growth, urbanization, and climate change are stressing public water supplies and offered a viable solution to the problem through direct potable reuse of purified water.
In August 2014, The College of Engineering hosted “Federal Day”. Legislative staff members from the offices of Senators John Boozman and Mark Pryor and the offices of Representatives Tom Cotton, Rick Crawford, and Steve Womack toured campus to learn more about engineering research at the University of Arkansas. The guests interacted with faculty researchers, visited engineering research laboratories, and heard from Randy Massanelli, vice chancellor for governmental relations, Provost Sharon Gaber, and John English, dean of the College of Engineering. The staffers toured engineering laboratories and learned about cutting-edge research in the college’s five research strength areas: electronics, energy, healthcare, nanoscience, and transportation and logistics. Featured here is a photo of the group listening to Dr. Kevin Hall discuss ongoing research in concrete pavement design.

MarTREC Director Dr. Heather Nachtmann presented to members of the Mississippi River Commission aboard the MV Mississippi (shown left) in August 2014. The presidentially appointed Commission was conducting an inspection tour of the McClellan-Kerr Arkansas River Navigation System (MKARNS). Dr. Nachtmann presented on a regional economic impact study of the MKARNS that she is conducting with the Arkansas State Highway and Transportation Department, Arkansas Waterways Commission, Oklahoma Department of Transportation, and the University of Arkansas Little Rock. In addition to estimating regional economic impacts, the project is also investigating the ancillary benefits of the MKARNS.