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1 Project Summary 

The U.S. inland waterways play a vital role in the domestic economy, but extreme weather 

events (e.g., floods and droughts) perennially threaten to disrupt their operations. Exac-

erbating these concerns, climate change is expected to increase the frequency and severity 

of these disruptions in the future. However, despite these known risks, researchers have 

devoted little attention to evaluating the financial implications of climate change on inland 

waterway supply chains. Moreover, traditional financial valuation methods do not facilitate 

an accurate quantification of long-term risks associated with investments in climate resilient 

infrastructure, which leads to a systemic under-investment in resilience and adaptation. 

Here, we develop a state-of-the-art, data-driven approach to evaluate climate financing 

strategies for inland waterways based on future costs of inland waterway supply chain dis-

ruptions due to climate change. The approach combines recent developments in financial 

analysis, climate modeling, simulation, statistical inference, and economic modeling. With 

this methodology in place, we can then evaluate cases where investments in resilient, water-

borne infrastructure can o↵er cost-e↵ective means of mitigating projected impacts of climate 

change. Our project paves the way for researchers being able to quantify the return on in-

vestment from climate adaptation strategies based on economic impacts of climate change 

on inland waterway supply chains and can help policymakers better allocate funding for 

mitigating future supply chain disruptions. 

The report is outlined as follows. Section 2 discusses the motivation for our research 

and delineates the specific goals for this project. Section 3 presents an overview of a novel 

financial framework that is better suited for quantifying costs and benefits of investments in 

climate-resilient infrastructure and discusses how this framework relates to current financial 

practices, with a particular focus on inland waterway developments. Section 4 details how we 

project future climate scenarios and waterway conditions. Section 5 discusses the economic 

modeling framework we use to measure holistic impacts of disruptions. Section 6 describes 

follow-ups to this project (i.e., Phase 2). Section 7 gives our concluding remarks. 
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2 Introduction 

2.1 Background 

The U.S. inland waterways are a collection of navigable channels, ports, and locks and 

dams that are crucial for maintaining the success of the domestic economy (MacKenzie et 

al., 2012; Whitman et al., 2019; Johnson et al., 2022). Every year, more than 2.3 billion 

tons of commodities are transported along the inland waterways, and these shipments have 

exemplary safety records and low costs compared to other modes of transport (Schweighofer, 

2014; Philip and Johnson, 2018). Most importantly though, ports along the inland waterways 

serve as hubs connecting vast, multimodal network of barge, rail, and highway transports 

(MacKenzie et al., 2012; Oztanriseven and Nachtmann, 2020). 

Extreme weather events, notably floods and droughts, perennially threaten to disrupt 

operations along the inland waterways (Pregnolato et al., 2017). Major disruptions can have 

severe consequences for supply-chains and economies of impacted areas (Folga et al., 2009; 

Magalhães et al., 2020; Oliveira et al., 2020). For example, in 2019, sections of the Upper 

Mississippi River (UMR) were closed for more than a month due to major flooding, which 

resulted in approximately $1.2 billion of grain not being shipped (Fahie, 2019; Johnson et 

al., 2022). To exacerbate concerns, climate change is expected to increase the frequency and 

severity of these weather-induced disruptions in the future (Camp et al., 2013). 

Despite these risks, researchers have devoted little attention to evaluating the economic 

implications of extreme weather disruptions along the inland waterways (Folga et al., 2009; 

MacKenzie et al., 2012; Oztanriseven and Nachtmann, 2017; Darayi et al., 2019; Oliveira et 

al., 2020). Moreover, to the best of our knowledge, no study has quantified impacts of flood-

and drought-related disruptions under future climate scenarios. This shortcoming is in large 

part due to the fact that current financial frameworks do not facilitate an accurate assessment 

of the long-term risks associated with investments in climate resilient infrastructure (David 

Espinoza et al., 2022). In other words, not only is there uncertainty in natural hazards 
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when projecting impacts of future climate scenarios (e.g., floods and droughts), but there 

is also much uncertainty regarding how climate-resilient waterborne infrastructure could be 

funded and implemented to help mitigate impacts of these disruptions (e.g., flood-resilient 

ports). Without reasonable approaches for measuring costs and benefits associated such 

projects, it is impossible to accurately portray risks of disruptions due to climate change. 

This knowledge gap has resulted in a lack of investor sentiment, especially in the private 

sector, to fund such opportunities (David Espinoza et al., 2022). Our goal is to develop a 

data-driven framework that addresses these gaps and in turn helps facilitate investments in 

resilient infrastructure by enabling researchers and policy-makers to better quantify the risks 

and returns of such projects. 

2.2 Project Goals 

Here, we propose a novel approach to evaluate climate financing strategies for inland wa-

terways based on future costs of inland waterway supply chain disruptions due to climate 

change. The approach integrates the decoupled net present value (DNPV) financial frame-

work with climate modeling, agent-based simulation, Bayesian statistical models, and in-

terdependent economic models. Using this methodology, we can evaluate cases where in-

vestments in resilient, water-borne infrastructure can o↵er cost-e↵ective means of mitigating 

projected impacts of climate change. Although we demonstrate our methodology for dis-

ruptions due to droughts and floods along the Upper Mississippi River, our framework can 

be easily extended to other regions and sections of the inland waterways as well as other 

transportation modes and infrastructure sectors. 

A holistic view of our approach can be found in Figure 1. Items highlighted in blue are 

the focus of this phase of the project (Phase 1). Here, we first run global climate projections 

drawn from various Representative Concentration Pathway (RCP) scenarios (Item 1). These 

global projections serve as inputs to down-scaled weather projections for predicting high and 

low water conditions along the Upper Mississippi River (Item 2). Additionally, we establish 
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use-cases for applying the novel, DNPV financial framework to better evaluate investments 

in climate-resilient infrastructure along the inland waterways (Item 4). 

1. Climate 
Scenarios 

2. Down-scaled 
Weather 

5. Economic 
Impacts 

6. Calibration and 
Uncertainty 

• Floods 
• Droughts 

3. Waterway 
Disruption Simulation 

4. Climate-Resilient 
Infrastructure 

• Agent-based Model 
• Johnson et al., 2022 

• Decoupled Net 
Present Value (DNPV) 

• Input-Output 
Models 

• Approximate Bayesian 
Computation 

• Current Conditions 
• RCP Scenarios 

Figure 1: Evaluating Investments in Climate-Resilient Waterborne Infrastructure 

In future work (i.e., Phase 2), these items will be integrated with supply chain disruption 

simulations (Item 3) and Input-Output economic models (Item 5) to help estimate impacts 

on dependent industry sectors and surrounding region. Moreover, we will use a cutting-

edge statistical approach called approximate Bayesian computation (ABC) to calibrate our 

approaches and quantify uncertainty of model parameters (Item 6). Combining these items 

with the DNPV financial framework, we can in turn estimate expected costs and benefits of 

the di↵erent investments in climate-resilient, waterborne infrastructure under various climate 

scenarios and waterway disruptions. 
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3 DNPV Financial Framework 

3.1 Background 

With the increasing number and severity of climate-related events, there is a critical need 

to explore investment opportunities in climate-resilient infrastructure (Item 4, Figure 1). 

However, there are several challenges involved with projecting costs and benefits associated 

these types of investments. In particular, current financial practices do not allow for the 

costs of climate risks to be separated from other risks (e.g., market risks), of which the 

former can be mitigated by investments in the infrastructure itself (D. Espinoza et al., 

2020). Related, because climate-resilient infrastructure developments typically have a long 

investment horizons, their funding is highly sensitive to discount rate assumptions (i.e., the 

rate of return that is applied to the present value calculation) (Nordhaus, 2014). These 

rates are often arbitrarily set or determined (David Espinoza et al., 2022). In the following 

paragraphs, we discuss these shortcomings and show how DNPV remedies them. 

Standard infrastructure project valuations are categorized into basic revenues (i.e., tolls, 

fuel and motor taxes, etc.) and expenditures (i.e., operation expenditures, maintenance, 

etc.) taken on by the project. These values are subject to a discount rate, which shows how 

the project’s valuation changes over long time horizons. These discounting rates are used to 

capture the risk a project takes over it’s lifespan. 

Typical discounting and valuation practices fail to quantify how cash flows of infrastruc-

ture are a↵ected by climate, which has led to various debates in the field about proper 

discounting practices. Prevalent climate economists have introduced ideas that include 

matching discount rates to market or treasury rates (e.g., 20-year US Treasury inflation 

protected securities rate) (Stern, 2007). Others assume that costs to future generations need 

to be factored in the rates (i.e., inter-generational equity) (Nordhaus, 2014). The issue with 

these ideas is that the arbitrary selection of a discounting practice in an attempt to account 

for all types of risks and factors has made the standard net present value (NPV) framework 
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untenable for infrastructure investment planning over long investment horizons. 

For example, Table 1 shows a traditional cash flow statement for a hypothetical yet 

realistic investment scenario involving the development of a solar wind farm (David Espinoza 

et al., 2022). Here, the risk-adjusted interest rate (i.e., the interest rate that attempts to 

factor in all feasible risks of the project) is determined by investors to be 10%. In this 

scenario, the initial $130M investment is never recouped (i.e., the NPV of the project is 

negative), so the project is not funded. 

Table 1: Cash flow example (NPV) 

Year 0 Year 1 Year 2 ... Year 19 Year 20 

Cash Flow ($M) (130) 14.50 14.50 ... 14.50 14.50 

NPV = -$65.5M, assuming risk-adjusted discount rate of r = 10% 

Table 2 presents the DPNV alternative. The DNPV framework introduces the concept 

of ”risk as a cost”, where risks are more transparently incorporated directly in cash-flows. 

In turn, discount rates are more informed and often lower because assumed risks are already 

accounted for in the cash-flows themselves. 

Table 2: Cash flow example (DNPV) 

Year 0 Year 1 Year 2 ... Year 19 Year 20 

Cash Flow ($M) (130) 14.50 14.50 ... 14.50 14.50 

Cost of Risk ($M) 

Market Risks (2.42) (2.42) ... (2.42) (2.42) 

Climate Risks (1.67) (1.67) ... (1.67) (1.67) 

Risk-Adj Cash Flow ($M) (130) 10.41 10.41 ... 10.41 10.41 

NPV = $48.4M, using a risk-free discount rate of r = 1.52% based on current 20-year treasury inflation-

protected securities (TIPS) rate (May 22, 2023) 

In this example, market risks (e.g., price fluctuations) and climate risks (e.g., damage from 

extreme weather) are modeled as distinct processes. Given that these risks are now explicitly 

defined as costs, a “risk-free” rate can be used to discount returns instead of a risk-adjusted 

rate (David Espinoza et al., 2022). The risk-free rate is more straightforward to estimate 

(e.g., 20-year US Treasury inflation protected securities rate), and project valuations are 
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less sensitive to changes in these assumptions (i.e., changes in risk-free rates are historically 

small) (Stern, 2007). As seen in Table 2, even though the projected cash-flows of the solar 

wind farm project are reduced compared to Table 1 because the former includes more types 

of costs, the overall valuation of the project is more favorable because known risks are better 

accounted for and not simply lumped together in an arbitrarily high rate that is compounded 

over many years (David Espinoza et al., 2022). 

Despite its advantages, there are additional challenges with the DNPV framework. In 

particular, modeling risks as distinct processes is more time-consuming and a more rigorous 

procedure than the quick NPV calculations, which is why the latter is currently favored by 

industries (David Espinoza et al., 2022). Additionally, data necessary to ground assump-

tions in DNPV calculations are not always easily available. This notion is especially true 

regarding the inland waterways; financial data are not readily available for many infrastruc-

ture projects (e.g., improvements to locks and dams). When data are available, they often 

don’t contain enough detail to accurately model involved risks. Similarly, documentation 

regarding methods and assumptions of projected cash flows are often missing or not publicly 

provided. In the following section, we discuss these points in more detail and recommend a 

path forward for our project. 

3.2 Inland Waterway Project Funding 

Although historical financial data involving inland waterway infrastructure developments 

are hard to come by, the USACE provides post-annualized cost reports (PACR) on various 

waterway, lock and dam, and port revitalization projects which contain cash-flows for each 

of these individual locations. An example of a PACR provided by the USACE is shown in 

Figure 2 for the Olmsted Lock and Dam system in the Ohio River and Great Lakes Division 

(Hancock, 2012). 

As seen, the example PACR report shows a discount rate of 7% for the project. However, 

the report does not describe how the this rate is calculated and/or its underlying assumptions. 
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Figure 2: Cost Benefit Analysis from Post Annualized Cost Report on Olmsted River 

Furthermore, the costs and benefits realized by the port are shown at a fairly high level (i.e., 

there is no distinction between cost of climate-related risks, marketing risks, or operational 

risks). Other reports, such as feasibility reports provided on similar waterway systems, 
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provide cost benefit analyses with little to no discussion on rates underlying assumptions, 

and have costs with minimal discussion (Dixon, 1991). As such, it is dicult to establish 

baseline assumptions for calculating potential costs and savings from investments in climate-

resilient developments within the DPNV framework. 

To help alleviate this lack of data, we will use Monte Carlo analyses to simulate reasonable 

estimates for relevant cash-flow items (Phase 2). In turn, we will leverage a technique called 

approximate Bayesian computation (ABC) to calibrate these simulations (Item 6, Figure 1). 

ABC will allow us calibrate the simulated DNPV outcomes with observed data from other 

parts of the framework (Toni et al., 2009). In other words, we can take parts of the framework 

where we have more data (e.g., climate projections and economic impacts) and use this 

information to rarefy the simulated DPNV items and quantify uncertainty thereof. ABC 

has proven to be e↵ective for calibrating complex models even when validation data are 

sparse, and our team has had prior success in applying this technique to similar analyses 

(Cisewski, 2014; Thiele et al., 2014; Johnson et al., 2022). 

4 Climate Scenarios 

Item 1 in our modeling framework, shown in Figure 1, is concerned with developing future 

climate-driven hazard scenarios that will impact the operation and performance of inland 

waterway navigation. These scenarios will be used to assess the cost of future disasters in 

the economic and financial valuation models. While our ultimate goal is to examine multiple 

hazards scenarios, we first begin by investigating flood risk by considering multiple future 

climate projections and evaluating the corresponding flood risk under each scenario in various 

sections of the Upper Mississippi River Navigation System. 
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4.1 Background 

As climate change continues to cause more intense precipitation events, and urbanization 

causing extreme land-use changes, the need for flood risk modeling becomes increasingly 

important (Hettiarachchi et al., 2018). Flood risk modeling plays a critical role in under-

standing and mitigating the potential impacts of floods, which pose a significant threat to 

infrastructure. In particular, port infrastructure is often located in low-lying coastal regions 

and is susceptible to various types of flooding, including storm surge, high tides, and heavy 

rainfall (Ribeiro et al., 2023). Extensive disruptions of this kind of infrastructure can have 

devastating impacts on the economic well-being of the region, and it is important to assess 

its flood risk under di↵erent uncertain future scenarios. The analysis will be run on a case 

study of the Upper Mississippi River (Figure 3), which runs from Lake Itasca, Minnesota, 

to Cairo, Illinois, as it intersects with the Ohio River. 

Figure 3: Map of the Upper Mississippi River (Source: steamboats.org) 
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4.2 Methodology 

In order to analyze river flood probability, we need to gather past and future flow data. 

The first step is to obtain modeled river discharge data from a Global Climate Model. We 

chose CMIP6 as our source. CMIP6 represents the latest global climate model data that 

is currently accessible. This data is highly reliable and forms the fundamental basis for 

the Assessment Reports of the Intergovernmental Panel on Climate Change (Climate Data 

Canada, 2023). 

The parameters we chose to configure our model were the following: 

• The variable name was ‘rivo’, which is the river outflow discharge. 

• The experiment IDs were ‘historical’, to obtain flows from 1850 to 2014, and ‘SSP126’, 

‘SSP245’, ‘SSP370’ and ‘SSP585’ to obtain flows from 2015 to 2100 under di↵erent 

climate scenarios. These scenarios (Intergovernmental Panel on Climate Change, 2023) 

were chosen based on the fact that they cover a wide range of future possible scenarios, 

and they are the most commonly used in climate scenario analyses: 

– SSP126: low GHG emissions and CO2 emissions cut to net zero around 2075. 

– SSP245: intermediate GHG emissions and CO2 emissions around current levels 

until 2050, then falling but not reaching net zero by 2100. 

– SSP370: high GHG emissions and CO2 emissions double by 2100. 

– SSP585: very high GHG emissions and CO2 emissions double by 2050. 

• The timescale is daily. 

• The geographic scale is 50km. 

• The variant label that was used was r1i1p1f2, and the selected model was CNRM-

CM6-1 from the National Center for Meteorological Research, Météo-France and CNRS 

laboratory. 
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The second step is to obtain observed discharge data from river gages to compare them 

to the model historical discharge data. Eleven Upper Mississippi River gages were selected 

from USGS (Figure 4), based on how far back in time the data is available. The common 

timespan between them was 1964-2014. These gages were then clustered according to the 

river segment they belong to, and their locations are shown in Table 3: 

Table 3: Gages and their Locations 
Cluster Gage Latitude Longitude 

Itasca Cluster 

USGS 5211000 47°13’56” N 93°31’48” W 
USGS 5227500 46°32’26” N 93°42’26” W 
USGS 5267000 45°49’34” N 94°21’18” W 
USGS 5288500 45°07’43.81” N 93°17’56.56” W 

Minnesota Cluster 
USGS 5331000 44°56’40.0” N 93°05’17.2” W 
USGS 5344500 44°44’45” N 92°48’00” W 
USGS 5378500 44°03’20” N 91°38’15” W 

Wisconsin Cluster USGS 5420500 41°46’50” N 90°15’07” W 

Missouri Cluster 
USGS 7010000 38°37’44.4” N 90°10’47.2” W 
USGS 7020500 37°54’02.7” N 89°49’48.8” W 
USGS 7022000 37°13’12.9” N 89°27’47.4” W 

4.2.1 Bias Correction 

Bias correction (Figure 5) is used to adjust climate model outputs to better align them with 

observed climate data. This process is necessary because climate models often exhibit sys-

tematic biases that can a↵ect their reliability in reproducing historical climate conditions and 

projecting future climate scenarios (Copernicus Climate Change Service - Global Impacts, 

n.d.). Bias correction is used to improve accuracy, and ensure consistency with historical 

observations. 

Figure 6 shows the di↵erence between the annual peak flows from 1964 to 2014 of the 

CMIP6 Model and the USGS gages for the Missouri cluster. While it seems both datasets 

follow the same pattern, it is apparent that the modeled dataset overestimates the discharge. 

There have been several proposed bias correction methods. We use the Quantile Mapping 

Bias Correction (Gudmundsson et al., 2012). The computational process is mathematically 
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Figure 4: Gage Map 

expressed in Equation 1. 

X future,adjusted  = F 1 
observed(Fmodeled(Xfuture)) (1) 

In Equation 1, Fmodeled is the eCDF of the model data and F 1 
observed is the inverse eCDF 

of the observed data. Corresponding corrections for the Missouri cluster can be seen on 

Figure 7. Figures 8 and 9 show the corrected annual peak flows of the Missouri cluster for 

the historical values, as well as each scenario values, respectively. 
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Figure 5: Bias Correction Methodology 

Figure 6: Di↵erence Between USGS Observed Annual Peak Flows and CMIP6 Historical 
Annual Peak Flows 

17 



Figure 7: Corrected Scenario Flows 

Figure 8: Corrected Historical Annual Peak Flows 
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Figure 9: Corrected Scenario Annual Peak Flows 

4.2.2 Future Peak Design Flow Determination 

The overall process of determining the future peak design flow consists of multiple steps 

(Figure 10). First, the best fit distribution of the annual peak flows is determined. Then, 

a return level is determined for each return period. Finally, the future design flows are 

calculated using the Delta Change Factor Method (Aryal et al., 2022). 

We chose a set of 10 candidate distributions that often appear in the literature of flood 

hazard frequency analysis. The distributions are: Beta, Gamma, Gumbel, Normal, Log-

Normal, Weibull, Generalized Pareto, Generalized Extreme Value, Generalized Logistic, and 

Pearson Type III. Best-fit analysis based on the Kolmogorov–Smirnov (K-S) test was per-

formed to narrow down the available options. At a confidence level of 95%, the null hypoth-

esis is rejected in favor of the alternative if the p-value is less than 0.05. Then, Q-Q plots are 

plotted for each distribution that was not rejected. A Q-Q plot is a scatter plot where the 

x-axis represents the quantiles from the reference distribution, and the y-axis represents the 

quantiles from the observed data. Each point on the plot represents a pair of corresponding 
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Figure 10: Future Peak Design Flow Determination Methodology 

quantiles. If the data follows the reference distribution, the points should roughly fall on a 

straight line, which suggests a good fit between the reference distribution and the observed 

data. An example Q-Q plot is shown on Figure 11. Based on these tests, the Gumbel 

distribution is chosen as the best-fit distribution (Figure 12). 

Figure 11: Q-Q plot of the Observed Data Using a Gumbel Distribution 

Gumbel Distribution is fit to each scenario to obtain their corresponding distribution 
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Figure 12: Histogram of the Observed Data fit to a Gumbel Distribution 

parameters. Then, the inverse survival function is plotted for each scenario. The survival 

function is the probability that a variable takes a value greater than x (Engineering Statistics 

Handbook, 2023). The inverse survival returns the value x, which is the return level, that 

corresponds to a probability of 1 
return period . An example survival function is shown on Figure

13. The return levels are calculated for each scenario for the return periods of 2, 5, 10, 25, 

50, 100 and 500 years. 

From the return levels, the future peak design flow is calculated using the change factor 

methodology (VishnuPriya and Agilan, 2022). In this approach, the Delta Change Factor 

(DCF) is calculated for each future scenario for each return period, as shown in Equation 2. 

The DCF factor is the model ratio of future flow to present/past flow. It shows the direction 

of change realtive to the baseline. A DCF value less than one means the flow has decreased, 

whereas a value more than one means the flow has increased. Using the DCF, changes 

predicted by the climate model can be applied to observed data to obtain the projections. 
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Figure 13: Inverse Survival Function of the Observed Data Using a Gumbel Distribution 

DCF = Q = 
Qfuture,model  

Qhistorical,model 
(2) 

For a more conservative analysis, the maximum DCF value for each return period under 

consideration is selected. The future peak design flow is then determined using Equation 3: 

Qfuture  = DCF ⇥ Qobserved (3) 

Tables 4, 5, 6 and 7 show the DCF values for the Missouri, Wisconsin, Minnesota and 

Itasca clusters, respectively. For the Missouri cluster, the maximum DCF values for 100-

year and 500-year flood are 1.081427 and 1.081292, respectively. These values correspond 

to design flows of 35021.25 and 41802.49 m3 s-1. For the Wisconsin cluster, the maximum 

DCF values for 100-year and 500-year flood are 0.987055434 and 1.001031807, respectively. 

These values correspond to design flows of 9478.61437 and 11664.55316.49 m3 s-1. For the 

Minnesota cluster, the maximum DCF values for 100-year and 500-year flood are 0.883511379 

and 0.883050906, respectively. These values correspond to design flows of 11791.61675 and 
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15603.23576 m3 s-1. For the Itasca cluster, the maximum DCF values for 100-year and 

500-year flood are 1.049166783 and 1.060665614, respectively. These values correspond to 

design flows of 2498.832002 and 3112.671737 m3 s-1. 

Table 4: DCF values for the Missouri cluster 
2-year 5-year 10-year 25-year 50-year 100-year 500-year 

SSP126 0.966474 0.982131 0.989763 0.99738 1.001969 1.005852 1.012955 
SSP245 1.002792 1.021177 1.030137 1.039081 1.04447 1.049029 1.057371 
SSP370 1.014248 1.02394 1.028664 1.033379 1.03622 1.038624 1.043021 
SSP585 1.082179 1.081879 1.081734 1.081589 1.081501 1.081427 1.081292 

Table 5: DCF values for the Wisconsin cluster 
2-year 5-year 10-year 25-year 50-year 100-year 500-year 

SSP126 0.899331 0.936469 0.953442 0.969709 0.9792 0.987055 1.001032 
SSP245 0.898148 0.899496 0.900111 0.900703 0.901048 0.901332 0.90184 
SSP370 0.883892 0.890483 0.893496 0.896385 0.89807 0.899464 0.901945 
SSP585 0.939164 0.933153 0.930405 0.927772 0.926236 0.924964 0.922703 

Table 6: DCF values for the Minnesota cluster 
2-year 5-year 10-year 25-year 50-year 100-year 500-year 

SSP126 0.947028 0.899613 0.891636 0.886486 0.884175 0.882541 0.880111 
SSP245 0.836169 0.848059 0.850059 0.851351 0.851929 0.852339 0.852949 
SSP370 0.842757 0.832164 0.830382 0.829231 0.828714 0.828349 0.827807 
SSP585 0.895729 0.886745 0.885235 0.884259 0.883821 0.883511 0.883051 

Table 7: DCF values for the Itasca cluster 
2-year 5-year 10-year 25-year 50-year 100-year 500-year 

SSP126 0.96387 0.963024 0.962672 0.962351 0.962168 0.962023 0.961774 
SSP245 0.964295 1.003177 1.019424 1.034203 1.042484 1.049167 1.060666 
SSP370 0.919712 0.942014 0.951329 0.959806 0.964554 0.968388 0.974983 
SSP585 0.962541 0.949886 0.944593 0.939784 0.937087 0.934914 0.931171 

The climate and flood risk analyses shown in this section will help determine the hazard 

scenarios of the modeling framework and evaluate projected costs of inland water disruption 

under di↵erent climate resilience strategies. 

23 



5 Economic Modeling 

5.1 Background 

The climate models and DNPV framework discussed in the previous tasks will eventually 

be linked to input-output (I-O) economic models (Item 5, Figure 1). I-O models are a 

long-standing approach for describing and quantifying the interdependent nature of sectors 

of an economy (Leontief, 1936; Santos and Haimes, 2004). The I-O models will allow us 

to estimate the cascading impacts across multiple industry sectors and regional changes 

in productivity resulting from disruptions due to extreme weather events along the inland 

waterways. In turn, we can see what industries and areas are most vulnerable to impacts and 

various climate scenarios (Haimes et al., 2005). Similarly, we will be able to quantify indirect 

benefits of savings from mitigated impacts by developing climate-resilient infrastructure. 

For our approach, the key decision-making process underlying these economic models 

is that when a disruption occurs, freight scheduled to ship through an inland waterway 

port might be rerouted. In the case of a localized disruption (i.e., one port is closed), 

shipments could theoretically be redirected through another nearby port if circumstances 

permit (MacKenzie et al., 2012). However, if the disruption is more widespread and an 

entire section of a river is closed, which is often the case with disruptions due to extreme 

weather events, alternative waterway routes are generally limited (Folga et al., 2009). As 

such, impacted businesses can reroute shipments via other modes of transport, namely truck 

or rail, or decide to leave their product on a barge or at port for the duration of the disruption 

(MacKenzie et al., 2012; Oztanriseven and Nachtmann, 2017). These rerouting decisions are 

case-specific with regards to the costs, preferences, and constraints of each business making 

them and will be later modeled in Phase 2 of this project via an agent-based simulation (Item 

3, Figure 1). Even though businesses may not consider the downstream impacts of their 

rerouting decisions, if they leave products at port, interdependent industries will experience 

delays in production (MacKenzie et al., 2012; Oztanriseven and Nachtmann, 2017). 
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In particular, we will utilize the multiregional inoperablility input-output model (MRIIM), 

a risk-based  extension to  the traditional  I-O model,  to quantify  how these  shipping delays  

propagate through the a region’s economy (Crowther and Haimes, 2009; Whitman et al., 

2019; Magalhães et al., 2020). Several studies have also utilized the MRIIM framework 

to quantify regional economic impacts resulting disruptions along the inland waterways 

(MacKenzie et al., 2012; Pant et al., 2015; Thekdi and Santos, 2016; Oztanriseven and 

Nachtmann, 2017; Darayi et al., 2019; Whitman et al., 2019), including work done by PI 

Baroud to quantify economic impacts of inland waterway disruptions and measure infras-

tructure resilience (Baroud et al., 2015). The technical definition of the MRIIM is specified 

by Equation 4 (Santos and Haimes, 2004; Crowther and Haimes, 2009): 
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where 

q̃ r = an  inoperability  vector  of  length  n consisting of the di↵erence between normal 

production levels and disrupted production levels, expressed as a percentage of 

normal production levels, of the nth industry sector in region r of p total regions; 

T ⇤ = [diag(x̃ 1 , x̃ 2 , . . .  , x̃ p)]-1T [diag(x̃ 1 , x̃ 2 , . . .  , x̃ p)]; 

x̃ r = a vector of length n consisting of industry sector production in region r ; 

T = 

0 

BBBBBBB@ 
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T rs = an  n⇥ n trade interdependency matrix consisting of the proportion of a 

commodity consumed in region s that is produced in region r ; 

A r = an  n⇥ n industry interdependency matrix of region r composed of elements arij; 

A ⇤r = the  inoperability  matrix  for  region  r, [diag(x̃ r)]-1A r[diag(x̃ r)]; 

a r 
ij = 

8 
>>< 

>>: 

lr 
i aij , lr 

i < 1 

aij , lr 
i  1 

; 

aij = the  input  of  industry  sector  i to j, expressed  as  a proportion  of  the  total  

production inputs to industry sector j ; 

lr 
i = the  location  quotient,  x r 

i /x
r 

xi/x ; 

xr 
i = industry  sector  i ’s production in region r ; 

xr = total  economic  production  in  region  r ; 

xi = industry  sector  i ’s production across the nation; 

x = total  national  economic  production;  

c̃ ⇤r = a  demand-side  perturbation  vector  of  length  n consisting of the di↵erence between 

normal demand and disrupted demand, expressed as a percentage of normal 

production levels, of the nth industry sector in region r of p total regions 

For the MRIIM we use in our approach, there are 71 North American Industry Clas-

sification System (NAICS) industry sectors (i.e., n = 71). Additionally, the twelve states 

(Louisiana, Mississippi, Arkansas, Tennessee, Kentucky, Missouri, Illinois, Indiana, Ohio, 

Iowa, Minnesota, and Michigan) that have significant amounts of inbound/outbound ship-

ments through the UMR comprise the regions of interest (i.e., p = 12,  and  r represents a 

given state). Company shipments that do not reach their destination in a timely manner 

are modeled as perturbations in demand (Horowitz and Planting, 2009; MacKenzie et al., 

2012). In other words, if companies in state r decide to keep their products at port, the 

value of these products, expressed as a proportion of that state-sector’s normal shipments, 

forms the corresponding entry in c̃ ⇤r. Given  ̃c ⇤r for all twelve states, we then solve for ~q 

(vector of length n⇥ p) in Equation 4 to estimate  the  disruptions  to each industry sector in  
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each state. All assumptions and data contained within Equation 4 need to be updated with 

the latest economic data to help ensure accurate projections of impacts from disruptions. 

5.2 Data 

We have recently updated the MRIIM with new baseline commodity flow and GDP pro-

jections (i.e., economic characteristics without a disruption present). These data will allow 

us to establish baselines that help reveal what industries and areas are most vulnerable to 

waterway disruptions from future climate events. Additionally, insights stemming from these 

baselines will help us ensure that are simulation(s) outcomes are intuitive. 

Figure 14 shows the total economic production by region (xr) and industry sector pro-

duction (xi) for the  top 5 leading industries  produced by the  MRIIM. These  are  based on  

the most data from the Bureau of Economic Analysis (BEA). As expected, the data reveal 

a high  amount  of regional economic  production in Illinois,  and a  high amount of industry  

production from wholesale trade and general and local government. 
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Figure 14: Regional Economic Production by State and by Industry Respectively 

For economic analysis of the inland waterway network in particular, the United States 

Army Corps of Engineers (USACE) Waterborne Commerce Statistics Center (WCSC) pro-

vides varying data sources for domestic commodities shipped, tonnages of shipping, and 

inbound and outbound trac. The most recent data includes records from 2021, which are 

used in the following figures. 

27 



Figure 15 shows tons of inbound and outbound shipments from the 12 states included 

in our economic model (i.e., those that are most a↵ected by disruptions along the UMR). 

These figures reveal high amounts of inbound and outbound waterborne commerce trac in 

Louisiana, and high amounts of outbound commerce trac out of Minnesota and Ohio. 
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Figure 15: Domestic Inbound and Outgoing Tonnages for Waterborne Shipments by State 
in the UMR 

Using the same data from the WCSC, the bar charts in Figure 16 show the leading 

commodity groups by tonnage on incoming and outbound shipments in the UMR region. 

Results show that a strong majority of commodities shipped in the UMR are Agricultural 

and Mineral products. 
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Figure 16: Domestic Inbound and Outgoing Tonnages by Commodity in the UMR 
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Figure 17 displays domestic inbound waterborne commerce shipments by tonnage, state, 

and commodity for 2021. Results show that high amounts of agricultural commodities 

are shipped to Louisiana, high amounts of mineral products are shipped to Ohio, Indiana 

and Kentucky, and high amounts of Scrap and Material based commodities are shipped to 

Tennessee. 
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Figure 17: Domestic Incoming Waterborne Commerce Shipments by State, Commodity, and 
Tonnage Shipped 

Related, Figure 18 depicts domestic outbound waterborne commerce shipments by ton-

nage, state, and commodity for 2021. Results show high amounts of Oil and Gas commodities 

being shipped out of Louisiana, Scrap and Material based commodities being shipped out of 

Minnesota, and Mining commodities being shipped out of Ohio. 
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Figure 18: Domestic Outbound Waterborne Commerce Shipments by State, Commodity, 
and Tonnage Shipped 

6 Future Work 

Phase 1 of our integrated approach focused on developing the necessary inputs and assump-

tions regarding climate projections and the DNPV financial framework (i.e., items 1, 2, and 

4 highlighted in blue in Figure 1). These are the items we have discussed in the report. 

Phase 2 of this project will focus on assessing the losses and quantifying uncertainty of 

the various climate scenarios scenarios. As mentioned, the approaches developed in Phase 1 

will be linked to a waterway disruption simulation that helps model decisions of industries 

to reroute shipments when facing disruptions along the inland waterways. This simulation 

will then be linked to the input-output (I-O) economic models, which we’ve already updated 
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with current economic data, to help estimate impacts on dependent industry sectors and 

surrounding regions. 

Moreover, as mentioned, we will use approximate Bayesian computation (ABC) to cal-

ibrate our approaches and quantify uncertainty of model parameters. This technique will 

be critical in addressing some of the data availability issues and uncertainty embedded in 

the DNPV financial framework. Because we will simulate DNPV cash-flow projections, as 

historical data are lacking, the ABC technique will help us narrow down with simulated 

outcomes are most reasonable and quantify key assumptions thereof. These estimates can 

in turn be included in the IO models, which will help us establish bounds of uncertainty on 

potential impacts and savings under the di↵erent climate scenarios. 

Our immediate next step is to model the flood along the river for the calculated design 

flows (Figure 19). HEC-RAS will be used to model the river flow across sections of the river. 

The output floodplain from the analysis will be compared with the corresponding FEMA 

flood map. In turn, these river flows will serve as direct inputs to the waterway disruption 

simulations. 

Figure 19: Hydraulic Modeling Methodology 
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7 Conclusion 

The U.S. inland waterways are an important yet often overlooked part of the domestic 

economy. Extreme weather events, namely floods and droughts, perennially threaten to 

disrupt their operations, and these events are expected to increase in severity and frequency 

due to a changing climate. Despite these known risks, little work has been done to evaluate 

how investments in resilient, water-borne infrastructure can help mitigate impacts of these 

disruptions. This shortcoming is in large part due to the fact that current financial practices 

do not facilitate accurate and transparent assessments of long-term costs and savings from 

such infrastructure projects. 

In this report, we have presented the initial steps necessary to develop a novel, integrated, 

and data-driven approach to evaluating investments in water-borne infrastructure. These 

steps have included translating climate scenario projections into inland waterway conditions, 

analyzing current shortcomings in financial frameworks, especially in the context of waterway 

infrastructure, and updating interdependent economic models with current data. 

The outputs from these e↵orts will serve as inputs to waterway disruption simulations 

(Phase 2) to quantify expected costs and benefits of di↵erent investments in climate-resilient, 

waterborne infrastructure under the uncertainty of a changing climate. In doing so, we aim 

to facilitate investments in such infrastructure projects by providing researchers, policy-

makers, and the investment community with more accurate and transparent estimates of 

corresponding risks and benefits. 
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