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1. INTRODUCTION 
 

Communities are socio-environmental systems that can be vulnerable to and adversely 
impacted by natural disasters such as floods, hurricanes, and storms which have long impacted 
human life and property. Over the past century, efforts have been made to mitigate natural disasters. 
However, climate-related hazardous losses have progressively increased (Leaning and Guha-Sapir, 
2013; He and Ding, 2021; He and Guan, 2021). For example, the United States (U.S.) has lost 
approximately $17 billion between 2010 and 2018 because of flooding alone (FEMA, 2020). The 
leading causes of floods are climatic changes, changes in land use, and other anthropogenic 
activities that include urban growth, deforestation, etc. (Change and Franczyk, 2008). Therefore, 
building and enhancing community resilience to these disasters and improving natural hazard 
management strategy are urgently needed to reduce losses in the future and minimize the negative 
impacts to society (Abrash et al., 2021).  

Fluvial and riverine flooding from inland waterways is a primary cause flood damages to 
communities in the United States.  Therefore, considering the mitigation efforts employed along 
inland waterway communities is critical when considering future resilience.  Studies project that 
due to increasing severity of climate change, riverine flooding along inland waterways will likely 
increase both in frequency and magnitude in the future (Wobus et al., 2021). Wobus et al., (2021) 
developed a riverine flood risk model to projection that estimates 20-30% more damages from 
riverine flooding is likely occur to communities along inland waterways without effective 
mitigation strategies under the scenario of significant global warming. Thus, acquiring sufficient 
information and developing computational tools to efficiently evaluate riverine flooding mitigation 
policies and the potential impacts of those policies on communities such as home buyouts 
programs are critical.  

Additionally, flood vulnerability and risk mapping efforts are focused predominantly on 
the hydrology and historically have not accounted for consideration of vulnerable populations. 
Improvements to the approach requires another perspective and changes in the resolution of 
damage estimates such as those obtained from the US Federal Emergency Management Agency’s 
Hazus (Scawthorn et al. 2006).  This requires a granular approach in comparison to historic 
analysis at a census tract or block level to accurately locate to communities and residents along the 
inland waterways where riverine flooding usually occurs to estimate and assess the vulnerability 
and resilience status associated with flood mitigation strategies.  One example is found in a study 
by Messager et al., (2021) which combined fine-scale demographic information interpolated by 
dasymetric mapping and flood hazard estimation model to reveal the inequities in inland 
waterways flood vulnerability. The dasymetric mapping in their study accelerated the findings of 
unequally distributed flood vulnerability that was likely covered by conventional aggregated 
governmental data (Messager et al., 2021). In another study by Nelson and Camp (2015), d was 
applied to evaluating flood risks across a community. Thus, novel vulnerability and spatial 
disaggregation models are two important elements in advancing the current state-of-the-art inland 
waterways riverine flooding assessment framework.  

For years, policies such as those that facilitate home buyout programs have been applied 
to mitigate hazards impacts after floods (Zavar 2015) in both inland and coastal areas. Home 
buyouts offer opportunities to flood-affected homeowners that meet certain criteria to relocate to 
places that are ideally at lower risk of flooding (Fraser et al., 2003). The properties that are bought 
out are often converted to greenspace to further enhance mitigation of flood impacts and improve 
community resilience (Nelson and Camp 2020). However, home buyout and other such programs 
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can potentially have unintended consequences in the neighborhoods where they take place.  When 
enough residents relocate out of the community to other places, the social fabric (i.e., a network of 
interpersonal social connections) and the tax base of the flood affected community can be severely 
damaged.  It has been found that the relocation of community members can cause more socio-
economic damages to rural communities than urban communities (Kraan et al., 2021). To date, the 
adverse impacts of property acquisitions through home buyouts to the social structure of a 
community is seldomly investigated. 

Previous studies have only evaluated the effects of the home buyout program from an 
individual or household perspective. For instance, Baker et al. (2018) gathered information on the 
home buyout participants’ experience with the acquisition process implemented in their 
community after Hurricane Sandy in 2012. Nelson and Camp (2020) investigated the economic 
and environmental benefits of a home buyout program using local data and a series of scenarios 
for Nashville-Davidson County, Tennessee in the United States. They concluded that proactive 
implementation is the best approach to remove individuals from harm’s way wards the value of 
benefits compared to other hypothetical scenarios (Nelson and Camp, 2020). McGhee et al., (2020) 
conducted a survey that used the households that were affected by Hurricane Sandy and 
participated in home buyouts to measure the change associated with flood hazards risks and social 
vulnerability. The survey indicated that most households tend to move to places with even higher 
social vulnerability and higher risks of exposure to coastal flood hazards. This can be due to the 
challenges of finding equivalent housing in a similar area with the pre-flood market rate offered 
for homes especially when housing stock is limited post-disaster. Buyout programs may not in fact 
reduce flood-affected household social vulnerability (McGhee et al., 2020). Studies have also 
found that home buyout programs may also involve feelings of coercion among the flood-affected 
population, degradation of trust with other people, and loss of attachment to the places they live 
(Fraser et al., 2003).   

For spatial disaggregation regression models, several previous studies have been proposed 
to address the spatial non-stationarity challenges in the spatial disaggregation field. For example, 
Li and Corcoran (2011) suggested dividing the study area into a series of subregions and 
performing a separate population redistribution within each subregion. The problem with this 
method is that the strategy of dividing the study area is arbitrary and the rather arbitrary nature of 
the newly divided subregions’ boundaries are unlikely to represent areas with homogeneous 
population distribution characteristics. Besides, local regression approaches that estimate separate 
coefficients for each population distribution feature were examined by quantile regression (QR) 
(Cromley, Hanink, and Bentley, 2012) and geographically weighted regression (GWR) (Lin, 
Cromley, and Zhang, 2011). Although these approaches advance the traditional global regression 
method in terms of prediction accuracy, they still did not seem to sufficiently solve the classic 
problem of the population distribution’s heterogeneity and the revealing of the population spatial 
autocorrelation feature is highly dependent on the configuration of the model’s regression 
covariates and their spatial distribution features (Cockx and Canters, 2015; Lee, 2011). Thus, 
incorporating spatial autocorrelation in the current dasymetric mapping approach is vital to 
improve the robustness of the current flood vulnerability assessment framework, especially 
evaluating community and residents close to the inland waterways where riverine flood usually 
occur.  

In summary, to date, there has not been substantial research conducted on evaluating the 
effects of a home buyout program on community social fabric.  Several research gaps still linger: 
(1) lack of a means to assess a community’s social fabric status which is transferrable and scalable 
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over time and geography (i.e., a social fabric index), (2) lack of a comprehensive assessment 
framework that can evaluate the validity and the reliability of a community’s social fabric index, 
(3) lack of a reliable spatial disaggregation model to interpolate social indicators into finer spatial 
scales to avoid the modifiable areal unit problem (MAUP).   
 
1.1 Project Objectives  
 

This project aims to fill such gaps by developing a model for calculating a Social Fabric 
Index (SoFI) using publicly available data that is both replicable and scalable. To test the model’s 
applicability and robustness, it was applied to a case study area and subjected to uncertainty 
analysis and global sensitivity analysis. The overall objective of this project is to evaluate the 
unintended consequences of flood mitigation activities (i.e., buyout programs) represented as 
community costs of measures such as residential home buyouts.  While buyouts are used in both 
coastal and inland communities as a mitigation approach, this study is focused primarily on a case 
study of an inland riverine community because an inland community may have more alternatives 
for mitigation than coastal areas (i.e., relocation and elevation may be more amenable options in 
some inland areas). 

 
1.2 Scope 
 

This project is focused on developing a Social Fabric Index (SoFI) model whose 
representative indicators are publicly available that can contribute to the state-of-the-art disaster 
and social science by addressing the challenge (1) mentioned above. The project has three key 
parts. In the first phase, we present a literature review of social vulnerability and resiliency indices 
and use of dasymetric mapping to disaggregate census data and provide more refined 
considerations for community-level analysis.  In the second phase, we develop the SoFI based 
upon consideration of available data from public sources and the extent to which certain indicators 
are critical in social fabric analysis.  Then, we perform sensitivity analysis to test the robustness 
of the SoFI model.  Finally, the model is then applied to a case study area with geographic 
information systems (GIS) and other tools used to perform the analysis and create maps 
demonstrating concepts.   
 Davidson County, Tennessee, in the United States was utilized as a case study area to study 
its social fabric and vulnerability (Figure 1). Located in the heart of Tennessee, Davidson County 
is a primarily urban county spanning over 1300 square kilometers (State and County QuickFacts, 
2020). In the 2020 survey, the population was approximately 715,884, with 54.05% being non-
Hispanic White (State and County QuickFacts, 2020). One of the most significant natural disasters 
that has occurred in Nashville was flooding in May 2010. The area was severely affected with 
more than $2.3 billion in property damages. The home buyout program that has been in use in 
Nashville for nearly thirty years was carried out as a mitigation strategy to motivate affected people 
to move to non-affected places aftermath of the 2010 flood, leading to potential heterogeneous 
influences on the social fabric status across space (Nelson and Camp, 2020). A significant number 
of homes were bought out prior and after the 2010 flood disaster.  



6 

 
 

 
Figure 1. Case study area: the Davidson County, Nashville, Tennessee, U.S. 

2. LITERATURE REVIEW 
 

2.1 Community Resiliency and Vulnerability Indices 
 

Resilience and vulnerability are ambiguous and contested concepts (Ford et al. 2018; 
Meerow and Newell 2019; Cannon and Mueller-Mahn 2010). Both concepts often hold a 
community’s predisaster condition as the reference point for evaluating the impacts of disaster and 
the goal for recovery, without addressing injustices in that status quo ante. Despite these concerns, 
it can be useful to assess community vulnerability and resilience. Resilience is a socio-
environmental system’s ability to adapt to external social, political, and environmental disruptions 
(Adger, 2000). Concerns over growing exposure to natural hazards and lack of community 
preparedness have stimulated interest in quantitative measurements of resilience (Johansen et al., 
2017). Indices are widely used to evaluate resilience and vulnerability because they combine many 
dimensions of vulnerability or resilience into a single metric, which allows easy assessments of 
differences across different communities, and of changes over time (Johansen et al., 2017).  

Numerous indices of community resilience have been proposed to assess communities and 
aid in planning (CARRI, 2013; Arup International Development, 2011; Sempier et al., 2010; 
FEMA, 2008; Plyer, 2013; OSSPAC, 2013). The Community and Regional Resilience Institute 
(CARRI) quantifies the community’s functional capacity to environmental disruptions (CARRI, 
2013). The Coastal Resilience Index applies a self-assessment strategy for evaluating historical 
records and generated resilience indices for each evaluated sector (Sempier et al., 2010). The New 
Orleans Index uses economic growth, inclusion, quality of life, and sustainability indicators to 
track the recovery of New Orleans neighborhoods since Hurricane Katrina in 2007 (Plyer et al., 
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2013). While these resilience measurement approaches provide valuable insights for assessments 
and planning, many are limited by specificity to geographic areas or types of hazards and lack of 
explicit quantitative outcomes, which can prevent their generalized application (Johansen et al., 
2017). Thus, more work is needed to improve the use of indices to assess community resilience 
(Johansen et al., 2017). 

Similar to resilience, community vulnerability is an ambiguous and contested concept. 
Here, we define vulnerability as a community’s capability to cope, confront, and adapt to the 
disruptions of a natural disaster (Flanagan et al., 2018). Examples of factors that might affect a 
community’s social vulnerability status include socioeconomic condition, gender composition, 
race and ethnicity, family structure, education, and medical services (Cutter et al., 2003). Many 
indices of vulnerability have been created, including: the Social Vulnerability Index (SoVI) to 
natural hazards (Cutter et al., 2003); the Social Vulnerability Index (SVI) for disaster management 
(Flanagan et al., 2011); the Environmental Vulnerability Index (EVI) (Kaly et al., 2014); the 
Coastal City Flood Vulnerability Index (CCFVI) (Balica et al.,2012); and the Human Development 
Index (HDI) (UNDP, 2016). SoVI is constructed using county-level socioeconomic and 
demographic data for the U.S. based on 1990 data (Cutter et al. 2003). Using Principal Components 
Analysis (PCA), an initial set of 42 variables was reduced to 11 independent components, which 
account for 76 percent of the variance. These components were added together to compute a 
comprehensive score for each county-the SoVI Social Vulnerability Index. The EVI was 
constructed using a theoretical framework that identified three aspects of environmental 
vulnerability: threats to the environment, the innate ability of the environment to cope with the 
dangers and ecosystem integrity, with the index representing a weighted sum of separate indices 
of these three aspects of vulnerability (Kaly et al., 2014). The CCFVI assesses vulnerability to 
coastal flooding, based on exposure, susceptibility, and resilience scores, with the final index 
representing a weighted sum of hydrological, socio-economic, and political-administrative sub-
indices. (Balica et al., 2009, 2012).  

Community vulnerability indices provide useful assessment tools that summarizes the 
multidimensional character of a community’s social vulnerability status in a single number. 
However, reducing a multidimensional portrait of vulnerability to a single index entails normative 
and political choices of what aspects to emphasize (Gillespie-Marthaler et al., 2019; Ford et al. 
2018).  

For most of the community resilience and vulnerability indices, the construction process 
begins with a theoretical analysis, which identifies critical systems that may be affected by disaster 
or that are expected to play crucial roles in recovery (Gillespie-Marthaler et al. 2019). Next, 
indicators related to community vulnerability or resilience are selected to represent the identified 
systems. Such indicators include voter participation (Sherrieb et al., 2010), percent of land used 
for agriculture (Kaly et al., 2014), and per capita income (Cutter et al. 2003).  

Although these indices are constructed using formally similar processes, there are myriad 
options at each step in the process in which normative judgment is applied, without a disciplinary 
consensus for identifying and weighting critical systems, selecting indicators, or acquiring and 
data, and analyzing data to reduce it to a single dimension. This contributes to the confusion and 
contestation around assessments of vulnerability and resilience (Gillespie-Marthaler et al., 2019; 
Ford et al. 2018). For instance, some studies identified three critical systems (Pendall et al., 2010), 
while others identified four (Balica et al., 2009; Norris et al., 2008; Ebisudani and Tokai, 2017; 
Vita et al., 2018) or even five (Cutter, 2016; Shaw et al., 2010; Tapia et al., 2017; Yoon et al, 2016). 
Even where the number of categories is the same, their composition can vary significantly. Cutter 
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(2016) found that ten indicators appeared in 40% of studies, which may provide a starting point 
for establishing standards, but the 60% of studies that don’t include these indicators illustrate the 
magnitude of the challenge. Gillespie-Marthaler et al. (2019) developed a classification scheme 
and searching framework to accelerate in identifying, selecting, and applying indicators associated 
with a variety aspect of social vulnerability. They identified over 550 indicators and metrics of 
sustainable community resilience, which exhibit similar problems of specification and redundancy. 

Another significant challenge for constructing indices lies in the use of correlation analyses 
to address redundancy among indicators. For a typical index, more than 20 relevant indicators are 
chosen. Dimension-reduction methods, such as PCA, are used to generate a smaller number of 
uncorrelated indicators that effectively summarize the original set (Cutter et al., 2003; Cutter et al., 
2008; Sherrieb et al., 2010). Using coordinate rotations, such as varimax, with PCA makes the 
connections between the original indicators and the principal components clearer and easier to 
interpret (Cutter et al., 2003). However, this analysis framework does not yield a unique index 
from a set of primary indicators: choices in the analysis procedure can lead to different indices, 
with different groupings of primary indicators (Cutter et al. 2014; Tapia et al. 2017). Another 
approach is Confirmatory Factor Analysis (CFA), which was used in the Communities Advancing 
Resilience Toolkit (CART) (Pfeferbaum et al. 2013, 2015). Shim and Kim (2015) also applied a 
CFA methodology to integrate a series of resilience dimensions in metropolitan areas of South 
Korea. Cui and Han (2019) used CFA to assess how well a method developed in Israel (the 
Conjoint Community Resiliency Assessment Measurement, CCRAM) performed in China. Bec et 
al. (2019) applied CFA to assess the reliability of an index for measuring resilience to economic 
structural change in the context of sustainable regional development. 

 
2.2 Global Sensitivity and Uncertainty Analysis on Community Vulnerability and Resilience 

Indices 
 

The accuracy and reliability of a model’s output is critical. Nonetheless, since models are 
eventually used as an abstraction form to approximate reality, not only the precise input data are 
rare in the case, but also the modeling process is subject to imprecision, leading to imperfect model 
output. As a result, the final model product is always associated with certain level of uncertainties 
and imprecisions which need to be assessed, interpreted, and visualized. Uncertainty and 
sensitivity analysis are great tools to investigate the imprecisions of the model outputs for user’s 
to be more confident when implementing activities associated with model’s results. The difference 
between the two approaches lie in that uncertainty analysis only evaluates and represents the model 
outputs’ uncertainties, while sensitivity analysis evaluates contributions of the uncertain inputs to 
the total uncertainties in the model’s final outputs.  

Uncertainty analysis (UA) is an important process to assess the total possible outcomes 
associated with their occurrence probability. The goal of uncertainty analysis in models of complex 
systems is to produce output metrics with a greater degree of confidence, with an underlying aim 
of improving user’s confidences in implementing activities associated with model’s output. 
Uncertainty performance has been widely studied in model predictions of sea level rise (Haasnoot 
et al., 2020), hurricane paths (Cox et al., 2013), and communities’ social vulnerability (Tate, 2013). 
Two general forms of uncertainty have been well understood: aleatoric and epistemic uncertainty. 
Aleatoric uncertainty occurs because of the heterogeneity or the intrinsic model randomness. 
Epistemic uncertainty arises from things that cannot be known but could potentially be measured 
from the limited accuracy and precision of our measurement (Jakeman, Eldred, and Xiu, 2010). 
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For example, in terms of social index research, aleatoric uncertainty affects the precision of the 
input data used for indexes model construction, and epistemic uncertainty affects each step of the 
model construction process (Tate, 2013). Specifically, epistemic uncertainty could potentially 
interact with each previous step to generate more uncertainties to the model’s output with the 
development of the index model construction process (Tate, 2013). Uncertainty and sensitivity 
analysis usually work together to quantitatively validate the social index model where uncertainty 
analysis focuses on evaluating the robustness of model outputs, and sensitivity analysis assesses 
the contribution of model’s total uncertainty to model’s each construction stage. 

Different from the uncertainty analysis, sensitivity analysis (SA) focuses on investigating 
how the model output values respond to model’s input changes. While the context where the 
sensitivity analysis is conducted could be complex, it generally refers to hypothetical scenarios 
analysis (Pianosi et al., 2016). SA also tells us about how the uncertainties (aleatoric and epistemic) 
in the independent variables affect the accuracy of our model’s predictions of the dependent 
variables. Sensitivity analysis has been widely studied in human-environmental models such as 
weather and climate forecasts and simulations (Stephenson and Doblas-Reyes, 2000; Collins et al., 
2012), sea level rise (Anthoff et al., 2006), projection of hurricane losses (Iman et al., 2005), 
evaluation of river water quality (Van Griensven et al., 2002), multizone air flow evaluation 
(Firrantello et al., 2007) and communities’ social vulnerability (Schmidtlein et al, 2008). Besides, 
studies have also applied the sensitivity analysis to evaluate some uncertain factors associated with 
model’s non-numerical aspects, including model spatial resolution and structure (Baroni and 
Tarantola, 2014).  

Schmidtlein et al. (2008) studied SoVI model’s sensitivity to its contexts (Cutter et al., 
2003) by considering a series of model uncertainties, including the model spatial scale, indicators 
selection, geographic contexts, etc. For example, to study the spatial aggregation level factor, they 
constructed SoVI and applied the principal component analysis (PCA) on three different spatial 
scales: the county level that was original SoVI scale adopted in Cutter et al. (2003), census tract 
level scale, and a manually created intermediate level of aggregation (Schmidtlein et al., 2008). 
They uncovered that the variance explained per principal decreased and the number of principal 
components selected increased with the decreasing of the level of aggregation at which the 
principal component analysis was conducted, echoing the result found by Clark and Avery (1976). 
This is because with increasing level of aggregation, more and more spatial frequencies may be 
lost, and the same amount of important information can be modelled by fewer numbers of 
independent variables. In terms of SoVI construction algorithm sensitivity analysis, three index 
construction stages were incorporated, including PCA selection, PCA rotation, and weighting 
scheme (Schmidtlein et al., 2008). Within each of the three different categories for index 
construction, several options were considered. For instance, in terms of PCA component selection, 
they considered Kaiser criterion, percentage variance explained, Horn’s parallel analysis as 
different methods (Schmidtlein et al., 2008). For PCA rotation methods, they accounted 4 rotation 
strategies which are unrotated solution, varimax rotation, quartimax rotation, and promax rotation 
(Schmidtlein et al., 2008). For weighting schemes, three approaches were considered: sum the 
component scores, first component only, and weighted sum using explainable variance from PCA 
to weigh each component (Schmidtlein et al., 2008). Factorial analysis with partial (“Type III”) 
sums of squares approach was conducted to assess the model’s construction process sensitivity 
and found that the algorithm is robust to minor changes in variable composition and scale but is 
sensitive to its quantitative construction stage like weighting scheme (Schmidtlein et al., 2008). 
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Their sensitivity analysis plays a critical role in understanding the impacts of changes in index 
construction as well as the scale on the final index representation (Schmidtlein et al., 2008). 

Tate (2012, 2013) investigated the uncertainty associated with the methods of SoVI 
construction process including indicator selection, spatial scale, measurement error, indicator 
transformation, indicator normalization, and weighting scheme. There are several uncertain 
alternatives associated with each of these construction stages. For instance, indicator 
transformation includes three alternatives like raw counts (none), normalized by population 
(percentage), and normalized by density (area) (Tate, 2013). One of the goals of the uncertainty 
analysis is to determine if the index model’s output is sensitive to the indicator transformation 
stage. Monte Carlo simulations were applied in the uncertainty analysis process to evaluate 
uncertainties associated with the SoVI model (Tate, 2013). In the uncertainty measurement and 
representation stage, three performance statistics to measure the uncertainty magnitude were 
studied. They are the confidence intervals (CIs), the median rank, and the coefficient of variation 
(CV). Results showed that for areas with higher vulnerability, there tends to be greater index 
uncertainty, suggesting that the index model might do a better job at screening low-vulnerability 
areas rather than accurately identifying high-vulnerability areas (Tate, 2013). They also suggested 
that it is the weighting scheme that contributes the most uncertainties to the model’s output results 
(Tate, 2013).  

 
2.3 Spatial Disaggregation Approach: The Dasymetric Mapping Analysis 
 

The spatial scale and resolution of interests have been verified by many studies to be 
important in evaluating the natural disasters’ risks and the effectiveness of the mitigation efforts 
when examining the intersection between natural hazards, mitigation efforts, and community 
resilience in a multi-level spatial scales (Chakraborty, 2011; Mennis, 2003). The mismatch 
between spatial units and the actual disaster scales have been verified to affect disaster risk analysis 
results (Maantay et al., 2007; Mennis, 2002). Especially for the social vulnerability, community 
resilience, and environmental justice study that heavily rely on the census data from the American 
Census Survey (ACS), their spatial interpretation of the demographic data in the census tracts (CTs) 
and census blocks (CBs) are not spatially aligned well with the place of hazard or interest such as 
the superfund site zones. In addition, the demographic variable such as population, single-person 
household in a census tract, or a census block spatial is usually too coarse to evaluate the 
effectiveness of the hazard mitigation efforts. For instance, home buyout activities usually occur 
in a property or building scale which is much finer than the census tract or block spatial scale. 
Thus, the spatial scale misalignment problem that occurs in the interface between the real natural 
hazard and the census boundary zone remains a huge challenge in the current community resilience 
and natural disaster management research field. 

Dasymetric mapping approach has progressed rapidly in recent years because of the 
development in computation algorithm and Geographic Information System (GIS) (Mennis, 2009; 
Petrov, 2012). Recently, new innovative ancillary data (e.g. tax parcel data (TP), building footprint 
data (BDF), and night light data (NTL)) as well as calculation process have received much 
attentions since they aid in spatially interpolating index-related indicators to a finer spatial scale 
(e.g. tax parcel or building scale) which is more suitable for environmental justice analyses and 
hazard mitigation efforts evaluation (Chakraborty, 2011; Bozheva et al., 2005; Eicher and Brewer, 
2001; Maantay et al., 2007; Mennis, 2003; Holt and Lu, 2011; Wu et al., 2005). For example, 
Mennis and Hultgren (2006) invented an intelligent dasymetric mapping (IDM) model that sample 
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on ancillary land cover land use information to determine the relationship between the underlying 
population surface density and land cover land use type. They also identified the superiority of 
IDM compared to the traditional areal weighting and ‘binary’ dasymetric mapping approaches in 
terms of estimation accuracy (Mennis and Hultgren, 2006). The IDM was widely adopted in the 
environmental justice and assessment field. For instance, Giordano and Cheever (2010) used IDM 
to reveal the risk surface from hazardous waste generation in San Antonio, Texas. They found that 
those socially vulnerable population like Black, or non-homeowners are more likely to be affected 
by and exposed to risks from the generators. In conclusion, it is the IDM that helped them identify 
that hazardous waste generation is more likely to affect those socially vulnerable population rather 
than the general population in Bexar County, Texas (Giordano and Cheever, 2010).  

Another important dasymetric mapping technique is the Cadastral-based Expert 
Dasymetric System (CEDS) (Maantay et al., 2007). Rather than using ancillary information in a 
uniform spatial resolution such as the land cover data from NLCD that is a 30m resolution, 
Maantay et al. (2007) developed the CEDS that uses non-uniformly distributed tax parcel 
information (e.g. property value, property type, and land use information) to delineate the 
heterogeneity spatial distribution of demographic data such as population in more urban areas such 
as the New York City (NYC). They conducted an asthma hospitalizations case study in the Bronx, 
NYC to show the importance of a more accurate population surface product for environmental 
justice evaluations (Maantay et al., 2007). Nelson et al. (2015) developed a hybrid approach to 
develop a tax parcel social vulnerability index (SoVI) by linking CEDS method and the SoVI 
model. The CEDS significantly reveal the underestimated socially vulnerable populations in a finer 
spatial scale that were masked by original coarser spatial scales (Nelson et al., 2015). 

In terms of using the nighttime light (NTL) as an ancillary data, Zhou et al. (2014) adopted 
the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) 
nighttime stable light data (NTL) as ancillary information approximately delineate the urban area. 
Anther novel dasymetric mapping approach includes using built-area and height data as ancillary 
data (Alahmadi et al., 2014), using high-resolution address point datasets to conduct the dasymetric 
mapping (Zandbergen, 2011), creating multi-layer multi-class dasymetric mapping framework to 
interpolate population distribution (Su et al., 2010), using means of raster pixel maps to rapidly 
facilitate dasymetric-based population interpolation (Langford, 2007), applying the hybrid model 
with different ancillary data combination (e.g. land cover data combined with tax parcel data, land 
cover data combined with NTL) (Briggs et al., 2007; Jia and Gaughan, 2016), and using machine 
learning model like random forests combined with remotely-sensed and ancillary data to project a 
finer spatial scale of demographic information distribution (Stevens et al., 2015). Here, we focus 
on reviewing the IDM and CEDS techniques in this proposal.  

The IDM is one of the most popular dasymetric mapping models that consists of a data-
driven part and a dasymetric sampling part (Mennis and Hultgren, 2006). The data-driven part of 
the method applies a land cover land use sampling process to derive the relationship between 
population surface densities and individual land cover type. It uses the derived density to reallocate 
the census population data to the land cover finer grids (Mennis and Hultgren, 2006). In their 
intelligent dasymetric sampling strategy, they developed three sampling methods: the 
‘containment’ method, the ‘centroid’ method, and the ‘percent cover’ method (Mennis and 
Hultgren, 2006). The IDM Toolbox was developed for ArcGIS Pro and can be found at: 
https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro. 

Cadastral-based dasymetric mapping systems (CEDS) is an important technique for 
mapping the census data of interest to a finer spatial scale in urban areas (Maantay et al., 2007). 

https://github.com/USEPA/Dasymetric-Toolbox-ArcGISPro
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The CEDS method adopts cadastral tax parcel data to redistribute census data to each tax parcel 
(Maantay et al., 2007). For example, the residential units (RU) and residual area (RA) can be used 
as population proxy units to derive populations within each tax parcel (Maantay et al., 2007). In 
many cases, the RA variable misses information in the tax parcel data (Maantay et al., 2007). Thus, 
they created a new variable, adjusted residential area (ARA) to replace the missing RA variable 
value (Maantay et al., 2007). By reaggregating the tax parcel level population value to the census 
block group level, the expert system can determine which proxy unit-number of residential units 
(RU) or adjusted residential area (ARA) can more accurately interpolate the population surface 
(Maantay et al., 2007). Then, the expert system would select the optimal proxy to perform the 
spatial disaggregation task (Maantay et al., 2007). However, the disadvantage of this method is 
that its applicability is restricted by the tax parcel data availability of the study area of interest. 

3. METHODOLOGICAL APPROACH 
 

3.1 Social Fabric Index (SoFI) Model 
 

The term “social fabric” refers to the degree of interpersonal connection and cohesion, and 
connection to place among community members. It embraces numerous interrelated phenomena, 
including demographic and economic factors, behavioral issues, social structures, social 
organizations, social networks, and relationships among people (Tanner et al., 2020). Different 
sociological perspectives profoundly influence the concept of social fabric and its 
operationalization in a specific analysis method. Civil society and social fabric describe the ability 
of a geographic place “to nurture local spaces, facilitate micro-organizations and support the 
multiplicity of cultural matrixes comprising civil society” (Cruz et al. 2009). 

In this project, we present a method for constructing a community Social Fabric Index that 
includes only physical or behavioral aspects of community rather than their emotional effects. This 
decision makes it easy to apply the method using widely available public data, without requiring 
difficult and expensive surveys of community members and their attitudes. We use metrics such 
as the number of churches and the amount of green, public spaces as proxies for attachment to 
place. 

In summary, we capture the social cohesion and fabric from the following perspectives: 
(1) Sociodemographic and economic factors, such as population and gender. 
(2) Social institutions, such as family structure and composition. 
(3) Social organizations, such as voluntary-based groups and churches. 
(4) Social networks or relationships among people, such as community-wide events. 
(5) A sense of belonging and identification with a particular social unit. 
(6) A sense of social justice and equity, particularly in government policies, such as public    
hearings and elections. 
(7) A willingness to participate in shared activities and possibly undertake voluntary work. 
(8) A sense of life satisfaction, happiness, and positive future expectations. 
(9) A sense of safety and security, such as fire stations, and emergency rooms. 
Different from traditional Social Vulnerability Index model (SoVI) (Cutter et al., 2003) 

which mainly includes standard sociodemographic data from American Community Survey, the 
proposed SoFI model incorporates several new dimensions including the community cohesion and 
engagement, social organization, public facilities, and amenities that take people’s relationship and 
connectivity within a community into consideration (Figure 2). 
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  Many studies have identified a strong association between sociodemographic diversity and 
social cohesion. Recent studies find that ethnic heterogeneity strengthen social fabric, by 
promoting greater trust among members with different ethnic features (van der Meer and Tolsma 
2014) and refute older studies which claimed that social capital and cohesion can be weakened by 
ethnic diversity (Putnam 2007). Thus, we included several ethnic indicators, such as the percentage 
of Asian, Hispanic, and Black populations in the model. Education strengthens social cohesion by 
enabling new members to be engaged in the social connections (Kantzara, 2011). Additionally, 
education also promotes healthy lifestyles and social norms, reducing social inequalities (Kyllönen, 
2019). Thus, the percentage of population with limited education was included in the model. 
Religion is another source of social cohesion, through its role in strengthening shared values,  sense 
of attachment, as well as fostering a sense of belonging (Zhang et al., 2019). Nonetheless, data on 
religious affiliation is not generally accessible, and its spatial distribution is not measured 
consistently in extant surveys (Miller 2016); therefore, we use the number of religion-related 
buildings as its approximations.   

Relationships between families play important roles in community cohesion (Ravanera, 
2000), and children are especially important to building inter-family connections in a 
neighborhood, at school, and in the greater community (Beaujot, 2000). For many adults, 
retirement precipitates a changing relationship with the community (Ravanera, 2000). In the past, 
adults who spent much of their adult life in the labor force, and their spouses, benefitted from 
pensions and other accumulated resources that can meet their needs in retirement and allow for 
informal and formal charitable giving (Ravanera, 2000). Retireees also have more time for 
volunteering formally or informally within the community (Ravanera, 2000). Thus, households 
with seniors are also good potentials to strengthen community cohesion and fabric. However, this 
may change as the majority of a new generation of retirees has not had access to defined-benefit 
pensions, and has not been able to save adequately for retirement (Ellis et al. 2014). While 
recognizing the shortcomings of a focus on families, we nonetheless include demographic statistics 
on the fraction of single-parent and single-adult households, as these have been found to correlate 
negatively with social cohesion (Fukuyama, 1995). Financial burdens, such as high cost of housing 
relative to household income, can discourage formation of new families (Wrenn et al., 2019; Hu 
et al., 2021). Thus, the proportion of single-parent and single-adult households may reflect social 
cohesion of a community, both through the direct contribution of families to social cohesion, and 
as an indirect measure of the economic health of the community (Kim and Kim, 2020; Beaujot, 
2000; Tanner et al., 2020). 

Community engagement and place of attachment are also core elements in promoting 
community identity and strengthening the social and cultural fabric (Manzo and Perkins, 2006). In 
a cohesive and engaged community, people not only like to be surrounded by each other, but also 
has a strong place attachment feeling to the place in which they live in and never want to leave. 
They are willing to participate in community public events like festival gatherings to hold 
aspirations for improving the community’s common good (Adha et al., 2018). Study found that 
social cohesion can be significantly improved by engaging public organizations’ work into social 
system (Andrews, 2014). Residents are willing to participate in responsive development of 
community from economic and social perspective since they have a strong belief that they can 
possess their own future. A cohesive community also shares a common vision and a sense of 
belonging with each of its member. One significance is that it greatly appreciates and values the 
opinions and thoughts from people with very different backgrounds (Local Government 
Association, 2002). Participation in public affairs is particularly productive in enhancing 
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community cohesion and engagement since people with variety interests have a chance to reach 
an equilibrium so that the whole community can be seen as one interest entity (Cantle, 2001). Thus, 
we included several indicators associated with community public affairs engagement, activities, 
such as the number of community events, elections, and hearings as indicators in the model.  

Community events include the initiatives of public socials by an HOA or an apartment 
property management team in that all neighboring residents can participate to know each other 
better. Community elections include elections of volunteer representative residents for an HOA 
board by fellow neighbors. Community hearings are gatherings and events held by officials and 
residents, in which residents are permitted to comment on public or political issues before the 
actions are taken. One example is the metro council meetings held by the Nashville city 
government in the David Scobey Council Chambers at the Historic Metro Courthouse located at 
One Public Square. Any public members wishing to speak at a public hearing can attend and 
express opinions.  

The level of reported crime in disadvantaged areas is related to low levels of social 
cohesion (Hirschfield and Bowers, 1997). Study identified that for those areas with high levels of 
social cohesion, crime rates are significantly lower than expected compared to those areas with 
low levels of social cohesion (Hirschfield and Bowers, 1997). This correlation may be explained 
by the fact that social cohesion plays a critical role in reducing crime rates for a community 
(Sampson et al. 1997; Dominguez & Montolio 2021).  

However, collecting data on people’s perception of community cohesion and attachment 
to place is challenging and time consuming without conducting large scale community surveys. 
Fortunately, important connections have been observed between the place attachment and the 
practice of community participation and the planning process (Manzo and Perkins, 2006). Thus, 
we used non-residential historical site like monuments as a proxy to approximate place attachment 
(Carpenter, 2013). It is believed that people who are associated with stronger feelings of place 
attachment and are more motivated in participating community public affairs (Carpenter, 2013).  

Public facilities and amenities are essential in enhancing residents’ social values by 
providing physical spaces for interaction and integration (Latham and Layton, 2019; Yuliastuti, 
2018). Thus, it is considered a valuable aspect of the social fabric of a community. The study found 
that people connect to a community through their physical built environment and the assets that 
the environment affords them (Tanner et al., 2020). The economic and social aspects of these 
infrastructures facilitate social connection, participation, integration, and improve social 
connectivity positively and negatively (Tanner et al., 2020). For example, schools serve as a 
physical medium where residents can communicate, help, and educate others. Restaurants and 
cafes provide valuable spaces for people to have meals together with their friends. They create 
more opportunities for people to have meals together and exchange opinions on cuisines and 
cultures, strengthening the social ties between individuals. As a result, in a community with 
sufficient public facilities, people can feel safe, secure, connected, and happy. We included a series 
of facilities and amenities, like the number of green spaces, barbers, supermarkets, universities, 
and fire stations, as indicators to reflect a community’s capability to provide opportunities for its 
residents to exchange physical and spiritual resources in a common shared space. 

The relationship between economic prosperity and the community social fabric can be 
substantial (Tanner et al., 2020). Studies showed that people associate affluence with strong social 
ties (Tanner et al., 2020). For example, people always want to go to communities with affluent 
choices of shopping centers, and public green spaces that require the community’s economic 
investment. People tend to believe that economic prosperity are essential for a strong social 
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cohesive community to thrive (Tanner et al., 2020). Meanwhile, a high-quality economy also 
facilities the prosperity of local businesses such as pubs and restaurants so that people have more 
places to consume and interact with each other. This could readily lead to a virtuous circle in that 
a stronger economic strengthens the local tax base, thus enabling the potential of more public 
facilities investment to further allure more population to move in. Ideally, we want to describe a 
community’s economy status from five perspectives: revenue, debt, investment, tax, and GDP. 
The revenue is the per capital monetary income of all people and local businesses within a 
community. The debt is the per capital debt of all people and local businesses within a community. 
The investment is the per capital financial investment from all people and businesses outside a 
community. The tax is the per capital monetary tax contributed by all people and businesses within 
a community. The GDP is the per capital gross domestic product of a community. However, since 
this information is tough to obtain from a public data source, we included some indicators that are 
publicly accessible to approximate the financial status of a community, like median gross income, 
unemployment rate, median gross rent, median house value, and the number of cafes/pubs per 
capita. 

Voluntary, publicly supportive organizations are believed to have significant impact on 
societal levels of social cohesion (Heuser, 2005). Relevant studies suggested that active 
participation in voluntary and supportive organizations often lead to autonomous actions that are 
shaped and carried out for the common good (Heuser, 2005). Fukuyama (1995) pointed out that 
the satisfaction we derive from being connected to others grows out of a fundamental desire for 
recognition. Active participation in a voluntary organization involves our need for human 
connectedness. The voluntary and supportive organizations can include national and international 
nonprofit/nongovernmental organizations (NGOs), places of worship, unions and lobbies, and a 
wide array of special interest groups. Although their respective functions, sizes, structures, and 
missions can vary greatly, every one of them purports to bring people together who share similar 
ideals to achieve common goals (Heuser, 2005; Woolley, 2016). Given the limited options for data 
that designates such gathering places, we calculated the number of churches, cathedral buildings, 
chapels, mosques, charities, temples, etc. (i.e., places of worship) as indicators to approximate the 
voluntary and supportive organizations. 

Based on the literature above, seven critical dimensions associated with community social 
fabric status were identified, and their corresponding indicators are displayed in Figure 2. 
Dimension and related indicators description are summarized in Table 1. These indicators were 
incorporated in the proposed SoFI. Data was derived from the American Community Survey 
(ACS). For example, gender diversity was derived by calculating the difference between the male 
and female population, and ethnic diversity was approximated by calculating the standard 
deviation of the ethnic group populations. For the identified public facilities and amenities 
indicators, data was manually derived from GoogleMaps, state registered charities search engines, 
governmental crime activity maps, and the Open Street Map data source. Some of the social 
organization, community relationships, and community cohesion and engagement indicators, were 
approximated by relevant physical facility indicators.  

After the selected indicators were collected, SoFI was constructed based on an inductive 
configuration since it begins with a large set of indicators (Tate, 2012). Options for each of the 
model’s construction stages were arbitrarily selected to serve as a baseline. We use italics in Table 
2 to show the baseline options for each construction stage. Specifically, all selected indicators were 
normalized based on the corresponding census tract unit area and standardized using z-score 
standardization. Then, principal components analysis (PCA) was performed on the normalized and 
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standardized indicators. Following this, the Kaiser criterion was adopted for principal component 
selection, and varimax rotation was adopted for principal component interpretation. Finally, a new 
summary index named “SoFI” was calculated by directly summing all the selected principal 
components based on Kaiser selection and varimax rotation interpretation results. All calculations 
were implemented in the RStudio software. Then, the calculated data was exported to ArcGIS Pro 
to visualize the spatial distribution of the social fabric index. 

 

 
Figure 2. Scoping diagram for communities’ social fabric dimensions. 
 
Table 1. Social Fabric Dimension and Indicators 
Dimension Description Indicators 
Sociodemographic 
Diversity 

Differences among people in various forms 
including gender, ethnic, education attainment, 
etc. 
Sources: MacDonald and Sampson (2012), 
Monteil et al. (2020), van der Meer and Tolsma 
(2014), Putnam (2007), Kantzara (2011), 
Kyllönen (2019) 

POP, MALE_POP, 
FEMALE_POP, ASIAN, 
RELIGIOUS_POP*, 
BLACK, HISPANIC, 
WHITE, 
LIMIT_EDUCATION, 
LIMIT_ENGLISH 

Community Cohesion 
and Engagement 

Community people’s participation in public 
policy affairs.  
Sources: Cortes Jr (1997), Tanner et al. (2020), 
Adha et al. (2018), Andrews (2014), Carpenter 
(2013), Hirschfield and Bowers (1997), Cantle 
(2001), Manzo and Perkins (2006) 

COMMU_EVENT*, 
COMMU_ELECTION*, 
COMMU_HEARING*, 
CRIME 
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Community 
Economy/Finances 

Community’s monetary and economic values 
Sources: Tanner et al. (2020) 

COMMU_REVENUE*, 
COMMU_DEBT*, 
COMMU_INVEST*, 
COMMU_GDP*, 
COMMU_TAX*, 
MEDIAN_INCOME, 
UNEMPLOYMENT, 
POVERTY, 
MEDIAN_HOUSE_VA
LUE, 
MEDIAN_GROSS_RE
NT 

Family 
Composition/Structure 

Differences among family structure within a 
community including single parent family, 
married couple family, etc. 
Sources: Nickols et al. (2015), Zahda and 
Fukukawa (2008), Ahlbrandt (2013) 

FAM_OWN_CHILD,  
SING_PARENT_FAM,  
SING_PERSON_HOSH
D, 
MULTI_FAM_HOUS,  
SENIOR_HOUS, 
TOT_HOUSHD 

Social Organization The community-led non-profit organizations that 
can provide public and voluntary services to its 
people. 
Sources: Woolley (2016), Heuser (2005), 
Fukuyama (1995)  

SUP_GRP*, 
VOL_GRP*, 
CATHEDRAL, 
CHAPEL, MONSTERY, 
MOSQUE, RELIGION, 
TEMPLE, CHURCH, 
CHARITY 

People’s willingness to 
participate in shared 
activities (Relationships) 

The public places density that enables people to 
participate shared activities to enhance their 
connections. 
Sources: Corcoran et al (2008), Gallent et al. 
(2003), Tanner et al. (2020) 

RECREATION, PUB, 
MONUMENT, 
STADIUM, CAFÉ, 
RESTAURANT 

Public Amenities and 
Facilities 

The public physical amenities that create 
opportunities to nurture and organize people 
within a community. 
Sources: Carpenter (2013), Latham and Layton 
(2019), Yuliastuti (2018),  

FIRE_STATION, 
GROCERY, 
SUPERMARKET,  
EMERGENCY, 
HEALTHCARE, 
HOSPITALS, 
COLLEGE, 
KINDERGARTEN, 
LIBRARY, K-12_SCH, 
PUBLIC_SCH, 
PRIVATE_SCH, 
UNIVERSITY, BANK, 
BUS_STOP, GREEN, 
BARBER 

 
3.2 Global Sensitivity and Uncertainty Analysis on the SoFI Model 
 

There are two general forms of uncertainty associated with models, including aleatoric and 
epistemic. Aleatoric is caused by model’s heterogeneity and the inherent randomness of input 
parameters and processes (Kiureghian and Ditlevsen, 2009). The epistemic uncertainty is caused 
by an incomplete and imprecise understanding of model parameters (Helton et al., 2010).  
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Traditionally, every stage of the SoVI construction step is arbitrarily selected, ignoring any 
epistemic uncertainties that accompany every step of the index construction process. However, 
epistemic uncertainty could interact with previous steps and propagate with the proceed of 
modeling decisions during the index development process.  

Thus, this project performed an uncertainty and global sensitivity analysis on the SoFI 
model to answer the following research questions: (a) How much uncertainty is associated with 
the SoFI model? (b) How is the SoFI model connected to uncertainty? (c) Which modeling 
decision contributes the most to uncertainty in the SoFI model? To address these questions, model 
options for an inductive SoFI for Davidson County, Nashville, were subjected to an uncertainty 
analysis and variance-based global sensitivity analysis approach. The uncertain model decisions 
evaluated are summarized in Figure 3. 

 

 
Figure 3. Diagram of uncertain construction factors associated with social fabric index (SoFI) 
composition process. 
 
Table 2. Uncertainty analysis model factors. 
Construction stage Options Probability density function 
Indicator transformation Raw Data 

Averaged by area  
Averaged by population 

Discrete (1, 2, 3) 

Indicator normalization Raw Data 
Z-score normalization 
Min-Max normalization 

Discrete (4, 5, 6) 

PCA component selection Kaiser selection 
Percentage variance explained 
Horn’s Parallel analysis 

Discrete (7, 8, 9) 

PCA rotation methods Unrotated Discrete (10, 11, 12, 13, 14, 15) 
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Varimax rotation 
Quartimax rotation 
Promax rotation (m = 2, 3, 4) 

Weight scheme Equal weight sum 
First component only 
Weight sum using explained 
variances 

Discrete (16, 17, 18) 

 
Indicator Transformation 

1. Raw data: no transformation method is applied. 
2. Averaged by area: every indicator values are divided by the corresponding spatial unit area. 
3. Averaged by population: every indicator values are divided by the corresponding total 

population. 
 
Indicator Normalization 

1. Raw data: no normalization method is applied. 
2. Z-score normalization: z score is calculated based on 𝑧𝑧 =  𝑥𝑥−𝜇𝜇

𝜎𝜎
, where 𝑥𝑥 is the individual 

indicator value,  𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of that indicator, respectively. 
3. Min-Max normalization: minimum value gets transformed into 0 and maximum value get 

transformed into 1: 𝑥𝑥′ =  𝑥𝑥 –min(𝑥𝑥)
max(𝑥𝑥) –min(𝑥𝑥) 

 
PCA Component Selection 

1. Kaiser criterion (Kaiser, 1960): principal components whose eigenvalues are greater than 
one are valid to be selected. 

2. Percentage variance explained: select principal components to explain an 80% amount of 
variation in the original data. 

3. Horn’s parallel analysis (Horn, 1958): retain principal components whose eigenvalues are 
larger than the expectation value by randomly generating 100 data sets. 

 
PCA Rotation Methods 

1. Unrotated solution: no rotation is applied. 
2. Varimax rotation (Kaiser, 1958): load each variable highly on just one component. 
3. Quartimax rotation (Neuhaus, 1954; Carroll, 1953; Ferguson, 1954; Saunders, 1953): 

enlarge the difference between large and small loadings, so that each variable loads only a 
few principal components. 

4. Promax rotation (Hendrickson & White, 1964): this method adopts an oblique rotation that 
make principal no longer orthogonal. A power parameter must be specified in this method, 
in this project, values of 2, 3, and 4 were selected for this rotation algorithm. 
 

Weight Scheme 
1. Equal weight sum: a simple approach to sum up all the selected principals. 
2. First component only: only select the first principal component to compose the SoFI. 
3. Weighted sum using explainable variance: each principal component is weighted based on 

the proportion of total variation that the principal component explains and then sums 
together to get the summary score. 
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Variance-based Global Sensitivity Analysis 
 

Variance-based global sensitivity analysis is the most appropriate method for assessing 
non-linear mathematical models, such as the index composite model (Saltelli, Tarantola and 
Campolongo, 2000). A sensitivity index can be developed to measure the sensitivity of a given 
input factor 𝑋𝑋𝑖𝑖  ( 𝑋𝑋𝑖𝑖  is the modeling factors include transformation, normalization, PCA 
computation methods, and weighting scheme) by computing the fractional contribution to the 
model output variance due to the uncertainty in 𝑋𝑋𝑖𝑖 (Saltelli et al., 2004). Formula (1) represents 
the calculation of sensitivity indices for a model with k independent input factors. For a model of 
the form 𝑌𝑌 = 𝑓𝑓(𝑋𝑋1,𝑋𝑋2, …𝑋𝑋𝑘𝑘), the total output variance 𝑉𝑉(𝑌𝑌) of the model output Y (Saltelli et al., 
2004) is: 
 

𝑉𝑉(𝑌𝑌) =  ∑ 𝑉𝑉𝑖𝑖 +  ∑ ∑ 𝑉𝑉𝑖𝑖𝑖𝑖 + ⋯+  𝑉𝑉12…𝑘𝑘𝑖𝑖>𝑖𝑖𝑖𝑖𝑖𝑖                                            (1)  
 
The total variances of the model output Y can be decomposed by each input factor’s contribution 
to the total model output variance 𝑉𝑉𝑖𝑖 and all interactions of these 𝑉𝑉𝑖𝑖𝑖𝑖 could term up to the order 
of k for a model with k uncertain input factors. 
 
where   

𝑉𝑉𝑖𝑖 =  𝑉𝑉𝑋𝑋𝑖𝑖�𝐸𝐸𝑿𝑿−𝒊𝒊(𝑌𝑌|𝑋𝑋𝑖𝑖)�                                                              (2)  
 
𝑋𝑋𝑖𝑖  is the 𝑖𝑖 -th input factor and 𝑿𝑿−𝒊𝒊  denotes the matrix of all input factors but 𝑋𝑋𝑖𝑖 . The inner 
expectation operator is that the mean of 𝑌𝑌 is taken over all possible values of 𝑿𝑿−𝒊𝒊 while keeping 
𝑋𝑋𝑖𝑖 fixed. The outer variance is taken over all possible values of 𝑋𝑋𝑖𝑖. Thus, the interactive effects 
between input factors  𝑖𝑖 and 𝑗𝑗 can be derived: 
 

𝑉𝑉𝑖𝑖𝑖𝑖 =  𝑉𝑉𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 �𝐸𝐸𝑋𝑋−𝑖𝑖𝑗𝑗(𝑌𝑌|𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖)� −  𝑉𝑉𝑋𝑋𝑖𝑖�𝐸𝐸𝑋𝑋−𝑖𝑖(𝑌𝑌|𝑋𝑋𝑖𝑖)� −  𝑉𝑉𝑋𝑋𝑗𝑗{𝐸𝐸𝑋𝑋−𝑗𝑗(𝑌𝑌|𝑋𝑋𝑖𝑖)}                  (3) 
 
Based on the law of total variance:  
 

𝑉𝑉𝑦𝑦 =  𝑉𝑉𝑋𝑋𝑖𝑖�𝐸𝐸𝑋𝑋−𝑖𝑖(𝑌𝑌|𝑋𝑋𝑖𝑖)� + 𝐸𝐸𝑋𝑋𝑖𝑖�𝑉𝑉𝑋𝑋−𝑖𝑖(𝑌𝑌|𝑋𝑋𝑖𝑖)�                                          (4)                 
 

The first order sensitivity index is computed as the fraction of the unconditional output 
variance 𝑉𝑉(𝑌𝑌) that is contributed by the uncertainty in 𝑋𝑋𝑖𝑖 (Saltelli et al., 2004): 

 
𝑆𝑆𝑖𝑖 =  𝑉𝑉𝑖𝑖/𝑉𝑉(𝑌𝑌)                                                                   (5) 

 
For a linear model, ∑ 𝑆𝑆𝑖𝑖 = 1𝑘𝑘

𝑖𝑖=1  and the first-order conditional variances of equation (1) are 
sufficient to the model’s total output variance. Nonetheless, for a non-linear model, higher-order 
sensitivity indices, which are responsible for interaction effects among sets of input factors, need 
to be computed. For a model with k independent input factors, the total number of indices 
(including 𝑆𝑆𝑖𝑖𝑠𝑠) that should be estimated is as high as 2𝑘𝑘 − 1. Thus, we calculate a second order of 
the sensitivity index that incorporates all the interactions involving a given factor 𝑋𝑋𝑖𝑖  as 𝑆𝑆𝑇𝑇𝑖𝑖 
(Saisana et al., 2005, Homma and Saltelli, 1996, Saltelli et al., 2004):  
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𝑆𝑆𝑇𝑇𝑖𝑖 = 1 −  
𝑉𝑉𝑋𝑋−𝑖𝑖{𝐸𝐸𝑋𝑋𝑖𝑖(𝑌𝑌|𝑋𝑋−𝑖𝑖)}

𝑉𝑉(𝑌𝑌)
                                                        (6) 

 
where 𝑉𝑉𝑋𝑋−𝑖𝑖{𝐸𝐸𝑋𝑋𝑖𝑖(𝑌𝑌|𝑋𝑋−𝑖𝑖)} is considered as the first order variance contributions of all factors but 𝑋𝑋𝑖𝑖. 
Thus, 𝑉𝑉(𝑌𝑌) −  𝑉𝑉𝑋𝑋−𝑖𝑖{𝐸𝐸𝑋𝑋𝑖𝑖(𝑌𝑌|𝑋𝑋−𝑖𝑖)}  must give the contribution of all terms in the variance 
decomposition that do include 𝑋𝑋𝑖𝑖, which is recognized as total order variance contributions. 

If there are interactions exist between the model input factors, ∑ 𝑆𝑆𝑇𝑇𝑖𝑖 > 1𝑘𝑘
𝑖𝑖=1 . For any given 

factor 𝑋𝑋𝑖𝑖, a significant difference between 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑖𝑖 indicates that interactions between factors 
are vital. Identifying factors’ interactive effects enable us to understand better of the non-linearity 
of the model structure (Saisana et al., 2005). 

Here, we also discuss the existing estimators and approaches to compute both sets of 
sensitivity indices 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑇𝑇𝑖𝑖  from a single set of simulation, which is the computation of an 
individual value of model output Y mapped from a sampled set of 𝑘𝑘  factors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘 . 
Supposed we have two independent sampling matrices A and B for simulating N experiments for 
a model with k input factors, with 𝑎𝑎𝑣𝑣𝑖𝑖  and 𝑏𝑏𝑣𝑣𝑖𝑖  as their generic elements. The column index 𝑖𝑖 
indicates the input factors, which runs from one to k, and the row index 𝑣𝑣 contains the simulation 
samples, which runs from one to N. To introduce variabilities of input factors, the matrix 𝐀𝐀B

(𝑖𝑖) is 
constructed where all columns are from A except the i-th column which is from B. Thus, all that 
is needed to compute both sets of 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑖𝑖 for the k factor-model is the triplet of matrices A, B, 
𝐀𝐀B

(𝑖𝑖) . Table 3 shows an example of a set of A, B, 𝐀𝐀𝐁𝐁
(𝒊𝒊)  triplet matrices with N = 5 simulation 

realizations. 
 
Table 3. Example of a set of A, B, 𝐀𝐀𝐁𝐁

(𝒊𝒊)triplet matrices with N = 5 simulation realizations. 
A B 
 
 
Q 

1 4 7 10 16  
 
Q 

1 4 7 11 16 
2 4 7 10 16 1 4 7 10 16 
1 5 8 11 17 1 5 7 10 17 
3 5 7 11 17 1 5 8 11 16 
1 6 7 11 16 2 4 9 10 18 

 
 
𝐀𝐀𝐁𝐁

(𝟏𝟏) 

1 4 7 10 16  
 
𝐀𝐀𝐁𝐁

(𝟐𝟐) 

1 4 7 10 16 
1 4 7 10 16 2 4 7 10 16 
1 5 8 11 17 1 5 8 11 17 
1 5 7 11 17 3 5 7 11 17 
2 6 7 11 16 1 4 7 11 16 

…. 
 

Here, the estimator of Saltelli et al. (2010) was adopted to calculate the first order of the 
sensitivity index 𝑆𝑆𝑖𝑖: 

 

𝑆𝑆𝑖𝑖 =  
1
𝑁𝑁
∑ 𝑓𝑓(𝑩𝑩)𝑣𝑣[𝑓𝑓(𝑨𝑨𝐵𝐵

(𝑖𝑖))𝑣𝑣𝑁𝑁
𝑣𝑣=1 −𝑓𝑓(𝑨𝑨)𝑣𝑣]

𝑉𝑉(𝑦𝑦)
                                                      (7) 

 
please see Saltelli et al. (2010) for more detailed mathematical derivation. 

The method of Jansen (1999) was used to calculate the total order of sensitivity index 𝑆𝑆𝑇𝑇𝑖𝑖, 
following the best practices identified by recent studies (Saltelli et al. 2010; Puy et al., 2020): 
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𝑆𝑆𝑇𝑇𝑖𝑖 =
1
2𝑁𝑁

∑ [𝑓𝑓(𝑨𝑨)𝑣𝑣 − 𝑓𝑓�𝑨𝑨𝐵𝐵
(𝑖𝑖)�

𝑣𝑣
]2   𝑁𝑁

𝑣𝑣=1

𝑉𝑉(𝑦𝑦)
                                                     (8) 

 
where any sampling point in either A or B sampling matrix can be indicated as 𝑥𝑥𝑣𝑣𝑖𝑖, where v and i 
respectively index the row and the column. Please see Jansen (1999) for more detailed 
mathematical derivation. Estimators for both 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑖𝑖 were reviewed in Chan et al. (2000). 

Sobol’s (1967) method of Quasi-Random sampling was used as the sampling algorithm for 
selecting the input factors. To compute the pair (𝑆𝑆𝑖𝑖,  𝑆𝑆𝑇𝑇𝑖𝑖) values, 2N simulation are ran for model 
output Y corresponding to matrices A, B, while kN simulations are ran to compute Y from 𝐀𝐀𝐁𝐁

(𝒊𝒊).  
Thus, the sensitivity indices pair can provide good approximation to the model sensitivities at a 
reasonable cost with a 𝑁𝑁(𝑘𝑘 + 2) model samples, where 𝑁𝑁 represents the sample size of A or B 
matrices (Saisana et al., 2005).  𝑁𝑁  typically varies in the 100 -1000 range. All the sensitivity 
computation processes were conducted in the R package sensobol (Puy et al., 2021). The detailed 
experiment design is summarized in Table 4. 
 
Table 4. Experiment design of uncertainty and sensitivity analysis. 
 Uncertainty Analysis  Sensitivity Analysis 
N 29 Estimator First order: “saltelli”, Saltelli et al. (2010) 
K 5  Total order: “jansen”, Jansen (1999) 
Model 
evaluation 

N(k+2) = 
(5+2) × 29 = 3584 

Matrices c (“A”, “B”, “𝐀𝐀B
(𝑖𝑖)”) 

Input Factor 
PDF 

Uniform Discrete Sample 
Algorithm 

Quasi-Random sampling 

 
3.3 Dasymetric Mapping: A Hierarchical Poisson Spatial Disaggregation Regression 

Model (HPSDRM) 
 

The hierarchical Poisson spatial disaggregation regression model in the context of 
population dasymetric mapping is proposed as follows. Suppose 𝒜𝒜 ∈ ℝ2 denotes the study area 
of the interest that can be partitioned into 𝑛𝑛𝒜𝒜 areal units 𝒜𝒜1,…., 𝒜𝒜𝑛𝑛𝒜𝒜  and 𝑌𝑌𝒜𝒜1,….., 𝑌𝑌𝑛𝑛𝒜𝒜  are their 
corresponding areal population observations. Suppose 𝑌𝑌𝑖𝑖 denotes the number of persons at a grid 
point 𝑠𝑠𝑖𝑖 within area 𝒜𝒜𝑖𝑖 that is unobserved. The purpose is to interpolate the quantity of interest 𝑌𝑌𝑖𝑖 
over a set of finer 𝑛𝑛𝑝𝑝 grid points  𝑠𝑠1,…., 𝑠𝑠𝑛𝑛𝑝𝑝 from 𝑛𝑛𝒜𝒜 coarser areal observations. Two levels of 
spatial random effects are incorporated to characterize the spatial autocorrelation features at both 
grids and the areal levels. The proposed population HPSDRM is characterized by a Poisson 
Regression Model for the target grid and observed area value: 
 

𝑌𝑌𝑖𝑖 ~ 𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑃𝑃𝑛𝑛(𝜇𝜇𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛𝑝𝑝                                              (9) 
 

𝜇𝜇𝑖𝑖(𝛾𝛾) = 𝑒𝑒𝑥𝑥𝑒𝑒(𝛾𝛾), 𝑖𝑖 = 1, … ,𝑛𝑛𝑝𝑝                                              (10) 
 
where the linear predictor 𝛾𝛾 for grids level with spatial random effects is characterized as follows 
 

𝛾𝛾𝑖𝑖 =  𝒙𝒙𝑖𝑖′𝜷𝜷 + 𝜂𝜂(𝑠𝑠𝑖𝑖) + 𝜙𝜙𝒜𝒜𝑖𝑖, 𝑖𝑖 = 1,…,𝑛𝑛𝑝𝑝                                       (11) 
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𝒙𝒙𝑖𝑖′  are 𝑘𝑘 × 1  vectors of selected land cover covariates for the 𝑖𝑖 th grid point and 𝜷𝜷  is the 
corresponding regression coefficients vector. Here, the link function is a log function, which is 
common for modeling counts data. The spatial noise is modeled as two sets which are all 
realizations of Gaussian random processes. The first set of spatial random effects 𝜼𝜼 =
(𝜂𝜂(𝑠𝑠1), … , 𝜂𝜂(𝑠𝑠𝑛𝑛𝑝𝑝)) characterize grid level’s spatial autocorrelation that assumes the population in 
closer grids is more similar than that in grids far apart. These random effects are assumed to be a 
zero-mean stationary gaussian random field, that is 𝜂𝜂 ∼ 𝑁𝑁(𝟎𝟎,∑), where ∑ is a Matérn kernel such 
that for generic grid point 𝑠𝑠𝑥𝑥 and 𝑠𝑠𝑦𝑦 ∈ ℝ2, we have 
 

𝛴𝛴𝑥𝑥𝑦𝑦 = 𝐶𝐶𝑃𝑃𝑣𝑣 �𝜂𝜂(𝑠𝑠𝑥𝑥),  𝜂𝜂�𝑠𝑠𝑦𝑦�� =  𝜎𝜎𝜂𝜂2

2𝜈𝜈−1𝛤𝛤(𝜈𝜈) �𝜅𝜅�𝑠𝑠𝑥𝑥 −  𝑠𝑠𝑦𝑦��
𝜈𝜈
𝐾𝐾𝜈𝜈(𝜅𝜅�𝑠𝑠𝑥𝑥 −  𝑠𝑠𝑦𝑦�)         (12) 

 
where ‖⋅‖  denotes the Euclidean distance between the spatial grid point 𝑠𝑠𝑥𝑥  and 𝑠𝑠𝑦𝑦 , 𝜎𝜎𝜂𝜂2  is the 

marginal variance of the process, 𝜅𝜅  is a scaling parameter that controls the range 𝑟𝑟(𝑟𝑟 =  √8𝜐𝜐
𝜅𝜅

) 
which is the distance where spatial correlation is approximately 0.1 (Matérn, 1986). 𝐾𝐾𝜈𝜈  is the 
modified Bessel function of the second kind, and 𝜈𝜈 is the smoothness parameter that is often set as 
a constant due to identifiability issues (Abramowitz and Stegun, 1972). Here, we set 𝜈𝜈 = 1 based 
on Lindgren et al. (2011). 
 The second set of areal level spatial random effects 𝝓𝝓 = (𝜙𝜙1, … ,𝜙𝜙𝑛𝑛𝒜𝒜)  characterizes 
observed areal data’s spatial autocorrelation and can be modeled by a conditional autoregressive 
(CAR) prior. We apply the CAR model proposed by Leroux et al. (2000), which was identified as 
the best models in recent studies (Lee, 2011, Utazi et al., 2019). These spatial random effects are 
also assumed to follow a zero-mean gaussian random process that 𝜙𝜙 ~ 𝑁𝑁(𝟎𝟎,𝜎𝜎𝜙𝜙2𝑸𝑸−1(𝑾𝑾)), where 
𝑸𝑸(∙)𝑛𝑛𝒜𝒜×𝑛𝑛𝒜𝒜  is a precision matrix and 𝜎𝜎𝜙𝜙2 is the marginal variance parameter of the gaussian process. 
Specifically, 𝑸𝑸(𝑾𝑾) =  𝜌𝜌(diag(𝑾𝑾𝟏𝟏) −𝑾𝑾) + (1 −  𝜌𝜌)𝑰𝑰𝑛𝑛𝒜𝒜 , where 𝜌𝜌  is a spatial autocorrelation 
mixing parameter, 𝟏𝟏 is an 𝑛𝑛𝒜𝒜 vector of 1’s, 𝑰𝑰𝑛𝑛𝒜𝒜  is the identity matrix and 𝑾𝑾 is a binary matrix 
capturing the neighborhood information of the areas. For which 𝑊𝑊𝑖𝑖𝑖𝑖 = 1 if areas 𝒜𝒜𝑖𝑖 and 𝒜𝒜𝑖𝑖  are 
neighbors to each other and 𝑊𝑊𝑖𝑖𝑖𝑖 = 0 otherwise. The neighboring areas are defined in a contiguous 
context that they share at least one vertex. 𝜙𝜙𝒜𝒜𝑖𝑖 is the spatial random effect of the area 𝒜𝒜𝑖𝑖 that the 
𝑖𝑖th grid belongs to. 
 These spatial noise terms can be thought of as random effects influencing population 
distribution but cannot be measured by observations. The population counts observed in tract 𝑗𝑗, 
𝑌𝑌𝑖𝑖  , is assumed to be the sum of all the unobserved counts of population in each grid 𝑖𝑖 inside the 
tract 𝑗𝑗.  

𝑌𝑌𝑖𝑖 =  ∑ 𝑦𝑦𝑖𝑖
𝑁𝑁𝑗𝑗
𝑖𝑖= 1                                                              (13) 

 
where 𝑌𝑌𝑖𝑖 is the observed population count in the tract 𝑗𝑗, 𝑁𝑁𝑖𝑖 is the number of grids inside the tract 
𝑗𝑗 , and 𝑦𝑦𝑖𝑖  is the unobserved population count for each grid 𝑖𝑖  inside the tract 𝑗𝑗 . The Poisson 
processes in each pixel are considered independent conditional on the underlying population latent 
surface. Thus, this sum also follows a Poisson distribution with mean equal to the sum of the means 
of each pixel Poisson process, that is, 
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𝑌𝑌𝑖𝑖  ~ 𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑃𝑃𝑛𝑛(∑ 𝜆𝜆𝑖𝑖
𝑁𝑁𝑗𝑗
𝑖𝑖=1 ), 𝑗𝑗 = 1, … ,𝑛𝑛𝐴𝐴                                            (14) 

 
𝑛𝑛𝐴𝐴 is the number of tract population observations. Thus, we can compute the likelihood function 
of the model (hyper)parameters 𝜽𝜽 = (𝜷𝜷,𝜎𝜎𝜂𝜂2, 𝜅𝜅,𝜎𝜎𝜙𝜙2 , 𝜌𝜌). The model was implemented in R using the 
Template Model Builder (TMB) package, and the parameters were estimated by maximizing the 
likelihood estimators (MLEs). A statistical review of the TMB package is elaborated in the 
following section. 
 
3.3.1 Template Model Builder (TMB) 
 
 Disaggregation modeling is intrinsically different from prediction modeling as the 
interpolations and the observations are usually at a different scale. Traditionally, the spatial 
modeling software package integrated nested Laplace Approximation (INLA) (Rue et al., 2009) 
has been widely adopted to solve various spatial modeling circumstances. Nonetheless, it is only 
able to solve the spatial disaggregation problem when the link function in the latent field is linear 
(Wilson and Wakefield, 2018). Thus, for the HPSDRM proposed in this study which is a non-
Gaussian generalized linear mixed model (NGLMM) with a log function as its link function in the 
latent field, the INLA package cannot achieve the goal of implementing the spatial disaggregation 
regression task.  

Fortunately, the TMB (Kristensen et al., 2016) package offers more flexibility in modeling 
complex spatial problems based on C++. It integrates several powerful packages, including 
CppAD (Bell, 2012), for automatic differentiation in C++, Eigen (Guennebaud et al., 2010), for 
linear algebra in the C++ library, and CHOLMOD (Chen et al., 2008), for efficient computation 
of sparse matrices.  

In this project, we created a C++ negative joint log-likelihood (NLL) objective function 
template in the format expected by TMB and calculate the joint likelihood and hyperpriors as a 
function of the model parameters and the spatial random effects. Then, the TMB package 
calculated estimates of both parameters and random effects’ MMAP using the Laplace 
approximation for the marginal likelihood by evaluating the objective negative log-likelihood 
function and its derivatives through R’s stats package nlminb function. 
 
3.3.2 Bayesian inference of Matérn kernel covariance parameters using the Spatial Partial 

Differential Equation (SPDE) approach 
 
 The continuous Matérn field is internally difficult to interpret by traditional inference 
approaches. However, the Gaussian Random Markov Field (GMRF) stochastic partial differential 
equation (SPDE) is a great solution to this challenge (Lindgren et al., 2011).  
 

(𝜅𝜅2 −  Δ)𝛼𝛼/2(𝜏𝜏𝜏𝜏(𝑠𝑠)) =  𝜔𝜔(𝑠𝑠)                                               (15) 
 
where 𝑠𝑠 ∈  ℝ𝑑𝑑 ,  Δ is Laplacian, 𝛼𝛼  is a smoothness parameter, 𝜅𝜅 > 0 is the scale parameter, 𝜏𝜏 
controls the marginal variances of the Matérn covariance function, and 𝜔𝜔(𝑠𝑠) is a Gaussian spatial 
white noise process. 

The exact solution of this linear fractional SPDE is verified to be the Gaussian random 
field 𝜼𝜼  with the Matérn variance-covariance kernel (Lindgren et al., 2011, Blangiardo and 
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Cameletti, 2015). Thus, we can use the finite element method through a basis function 
representation to develop an approximation to the SPDE’s exact solution. The basis function 
representation can be defined on a triangulation of the domain 𝒟𝒟, 
 

𝜏𝜏(𝑠𝑠) =  ∑ 𝜑𝜑𝑔𝑔(𝑠𝑠)𝜏𝜏𝑔𝑔�𝐺𝐺
𝑔𝑔=1                                                        (16) 

 
where G is the total number of vertices of the triangulation, {𝜑𝜑𝑔𝑔} is the set of basis functions, and 
{𝜏𝜏𝑔𝑔�} are zero-mean Gaussian distributed weights. 
 Thus, for each linear predictor, we have 
 

𝜂𝜂𝑖𝑖 =  𝒙𝒙𝑖𝑖′𝜷𝜷 +  ∑ 𝜑𝜑𝑔𝑔(𝑠𝑠𝑖𝑖)𝜏𝜏𝑔𝑔�𝐺𝐺
𝑔𝑔=1                                                 (17) 

 
where 𝜑𝜑𝑔𝑔(𝑠𝑠𝑖𝑖) is the value of the gth basis function evaluated in the 𝑠𝑠𝑖𝑖  grid point. The linear 
predictor is: 
 

𝜂𝜂𝑖𝑖 =  𝒙𝒙𝑖𝑖′𝜷𝜷 +  ∑ 𝐴𝐴𝑖𝑖𝑔𝑔𝜏𝜏𝑔𝑔�𝐺𝐺
𝑔𝑔=1                                                     (18) 

 
where  𝐴𝐴𝑖𝑖𝑔𝑔 =  𝜑𝜑𝑔𝑔(𝑠𝑠𝑖𝑖)  maps the GMRF 𝜏𝜏𝑔𝑔�  from the G triangulation vertices to the 𝑛𝑛𝒜𝒜 
observational locations (Blangiardo and Cameletti, 2015).  
 

3.3.3 Scale function to preserve the pycnophylactic property 
 
 To preserve the pycnophylactic property of the dasymetric mapping process, a scale 
function (equ.19) is applied to the interpolated grids population so that the sum of the grid’s 
population is equal to the original tract observations, 
 

𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 =  𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 × 𝑝𝑝𝑖𝑖
∑ (𝑝𝑝𝑖𝑖)𝑖𝑖∈𝑗𝑗

                                                   (19) 

 
where 𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 is the estimated value in the grid 𝑖𝑖, 𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 is the observed value in the tract 𝑗𝑗 that the 
grid 𝑖𝑖 resides in, and 𝑒𝑒𝑖𝑖 is the predicted grids population output from the HPSDRM.   
 
3.3.4 HPSDRM Model Setup 
 
 For the HPSDRM model application in the Nashville case study, weak informative 
hyperpriors were provided and summarized in Table 5. Specifically, we used the penalized 
complexity (PC) priors for the Matérn kernel’s range and scale parameters, aiming to regularize 
the model towards a flatter field with a smaller magnitude (Fuglstad et al., 2019). These PC priors 
are determined to help avoid the problem of overfitting, simplifying the interpretation of the 
posterior results (Fuglstad et al., 2019). A negative joint log-likelihood objective function in the 
format expected by the C++ template was built based on the theories discussed above. Then, the 
tract population and selected land cover covariates were input into the model to conduct the 
Bayesian inferencing process. The mesh construction for solving the SPDE is provided in the 
supplemental material. The model-fitted results were inferenced by the joint-posterior 
approximated by the asymptotic Gaussian distribution with the mean of estimated MMAPs and 
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the joint variance-covariance matrix calculated from the TMB. For all model parameters except 
the two Matérn kernel hyperparameters, random samples were drawn from the joint posteriors to 
compare with the priors.  

One of the innovations of the HPSDRM model is that it provides uncertainty analysis for 
the prediction results since it is intrinsically a Bayesian inference model. Since each model’s 
posterior sample maps to a prediction realization, uncertainties of the model prediction were 
inferenced by calculating the confidence interval at the 0.975 and 0.025 levels from the sampled 
prediction realizations. Detailed information regarding the HPSDRM model fitted results of the 
Nashville disaggregated grids population are presented in the Results section.   
 
Table 5. Summary of the (hyper)priors used in the HPSDRM model application in the Nashville 
case study. 
Parameter Family Prior parameters 
Intercept Gaussian mean = 0, sd = 2 
LC (DOS, DLI, DMI) Gaussian mean = 0, sd = 1 
Range (𝒓𝒓) PC min = 1.5, prob = 0.01 
Scale (𝝈𝝈𝜼𝜼) PC max = 0.25, prob = 0.01 
Logit (lambda) (logit (𝝀𝝀)) Gaussian mean = 0, sd = 15 
Precision ( 𝟏𝟏

𝝈𝝈𝝓𝝓
𝟐𝟐 ) Gamma shape = 1, scale = 2 

4. RESULTS AND DISCUSSION 
 

4.1 Social Fabric Index and its Uncertainty and Sensitivity Analysis: Nashville Case 
Study 

 
Figure 4(d) presents the baseline index for the inductive SoFI model for tracts in Davidson 

County. Census tracts identified with better social cohesion status represent larger rankings of the 
baseline shown in dark blue colors, while smaller rankings of the baseline index signify worse 
social cohesion shown in red colors, with the remaining 30 percent of tracts assigned moderate 
social cohesion rankings shown in orange and yellow colors. A clear pattern is identified that social 
cohesion is generally better in rural communities rather than urban areas, echoing the findings 
from previous studies (Avery et al., 2021).  Tracts with lower social cohesion are found to be 
clustered in the downtown area, which highly correlates with the low-income population density 
distribution pattern. Groupings of higher social cohesive census tracts are identified along the 
northwestern part of the county, where fewer crimes exist . These findings support our hypothesis 
that social cohesion is a strong indicator of social cohesive population and its associational 
relationship with places, where rural areas can take advantage of every social fabric dimension 
including sociodemographic diversity, physical infrastructure, green and public spaces and social 
engagement. Nonetheless, urban areas lack these elements to pursue a cohesive environment 
though they provide vitality to attract diverse population groups from different cultural 
backgrounds. Study found that although high density of neighborhood and land use mix might 
indicate a higher urban vitality, they might cause damage to social cohesion since strained relations, 
mass population migration movements, and possibly high crime rates could lead to social 
fragmentation (Mouratidis and Poortinga, 2020). This points out the importance of efficiently 
evaluating the effects of flood mitigation strategy like home buyouts on those inland waterway 
communities. Take the city of Nashville as an example, home buyouts usually occur to those 
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downtown communities close to inland Cumberland River waterways after the 2010 flood. The 
buyouts could accelerate the population movement and migration, further worsening the social 
fabric status of these originally fragmentated communities. 

The Monte Carlo simulation produced a distribution of the SoFI rankings for each tract, 
providing a means to evaluate uncertainty in the index rank model. Figure 4(a) presents the social 
fabric median ranking for each tract based on the simulation results, which we consider as a rough 
approximation to the ‘true’ index value. Comparing Figure 4(a) and (d), we identify similarities 
between baseline and median ranking for most tracts, suggesting that our baseline index can 
successfully capture the social fabric information of the area with adequate accuracy. Specifically, 
both indices illustrate the trend of a worse social cohesive status for those tracts around the 
downtown area and a better social fabric structure for those tracts along the northwestern rural 
communities of the county. However, some certain discrepancies can be found between the median 
and baseline index, especially for those small tracts in the heart of the county, where baseline rank 
identified those tracts as social fragmented areas, median rank seems to miscategorize these tracts 
into the social cohesive category since median value tends to enlarge the index rank. This stresses 
the importance of performing uncertainty analysis of the model. To better quantify and visualize 
the relationship between uncertainty and SoFI ranking associated with each tract, we used bivariate 
map to visualize the index ranking value and its descriptive uncertainty metrics in the same plot 
(Figure 4(b) - (c), (e) - (f)). 

Here, we used transparency to present uncertainty metrics where alpha was set to 1 (fully 
opaque) to represent tracts with the lowest uncertainty, and alpha was set to 0 (fully transparent) 
to represent the largest uncertainty. Figure 4(b) and (c) are the spatial representation of the SoFI 
model uncertainty, showing that tracts with worse social fabric status tend to have a more extensive 
CV and a wider CI. Clear visualization of some missing tracts in both Figure 4(b) and (c) suggests 
that SoFI model is very uncertain about its judgment of the social fabric status of these tracts, 
including those tracts in the southeastern part of the county mentioned above. Compared with 
Figure 4(a), we found that SoFI model is better at determining moderate social fabric tracts than 
those with higher or lower social fabric status, especially for those tracts with a lower degree of 
social cohesion. The visualization of baseline rank bivariate map suggests similar findings (Figure 
4(d) – (e)). Tracts with moderate social fabric status are opaquer than those with a higher or lower 
degree of social cohesion, supporting the conclusion from the median rank model.  

Figure 5(a) and (c) reveal the relationship between median and baseline social fabric rank 
and index variability from CV perspectives, respectively. A negative correlation between social 
fabric rank and index variability is revealed that the index variability and uncertainty increase with 
the decrease of the social cohesion level. This relationship is also identified in Figure 4 and again 
verified by previous studies (Tate, 2013). The relationship between CI and social fabric rank 
shown in Figure 5(b) and (d) also exhibits a similar trend compared to CV results. The difference 
is that not only for weak social cohesive tracts, CI also suggests a larger uncertainty with the 
increase of social fabric index (Figure 5(b), (d)). As SoFI is aimed to identify social fragmented 
areas with lower social cohesion status, this indicates that the index model is better at filtering 
moderate social cohesive areas rather than identifying communities with higher or lower level of 
social fabric status. However, the SoFI model can serve as a guidance to capture the general trend 
of social fabric status from rural to urban communities.  
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Figure 4. SoFI and its uncertainty visualizations: (a) SoFI median rank for tracts in the Davidson 
County; (b) SoFI median rank and CV for tracts; (c) SoFI median rank and 95% CI for tracts; (d) 
SoFI baseline rank for tracts; (e) SoFI baseline rank and CV for tracts; (f) SoFI baseline rank and 
95% CI for tracts. 
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Figure 5. The relationship between SoFI rank and uncertainty descriptive metrics: (A) median rank 
with CV; (B) median rank with CI; (C) baseline rank with CV; (D) baseline rank with CI. 
 

The median and variance are essential measurements to exhibit the reliability of the index 
model designs. However, the question of which model parameters are the main drivers of those 
uncertainties remains unknown. Global sensitivity analysis provides a diagnostic tool to produce 
sensitivity indices that can evaluate the behavior of model parameters in terms of both first-order 
and interactive total effects perspectives. The sensitivity indices for the model are shown in Table 
6 and Figure 7. The first-order index values are vital to determine highly effective construction 
alternatives, and total-effect index values provide a comprehensive view of the total influences 
brought by each construction stage, including its own and interactions with others.  
 For this inductive SoFI model, the transformation and PCA selection are the two important 
construction parameters with high first-order and total-order effects of sensitivity indices (Figure 
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7). Taken together, the first-order effects account for 0.44 of the total variances, meaning that some 
degrees of interactions are involved between these parameters. We identified the most significant 
output variance contributor for each tract to map the dominating factors of SoFI ranking model for 
Davidson County (Figure 6). Figure 6 suggests that indicator transformation parameters tend to 
contribute more uncertainties to those tracts with higher or lower areas, while the weighting 
scheme plays more critical roles in those tracts with smaller sizes. PCA selection dominates 
uncertainty contributions for certain amounts of tracts since it highly correlates with the following 
rotation and weighting scheme stages, overriding some of the uncertainty contributions from the 
following construction steps. Thus, the roadmap to reducing the uncertainty in the SoFI is clear: 
focus more on choosing the appropriate transformation approach when the mapping units are 
highly heterogenous, and the combination of PCA selection, rotation and weighting scheme when 
mapping standard homogenous units that best represent model’s principals. 

 
Figure 6. Identified dominating factors of SoFI ranking model for each tract of the Davidson 
County, Nashville.  
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Figure 7. Sensitivity analysis Results. 
 
Table 6. Summary of sensitivity analysis results. 
Sensitivity 
Index/Construction 
Stage 

Normalization Transformation PCA 
Selection 

PCA 
Rotation 

Weighting 
Scheme 

First-order 0 0.24 0.12 0.07 0.012 
Total effect 0 0.85 0.47 0.38 0.3 

 
4.2 Dasymetric mapping: HPSDRM application in Nashville case study 

 
The HPSDRM model input information is displayed in Figure 8. The polygon response 

data was obtained by the Decennial 2020 tract population, and the land cover predictors were 
retrieved by aggregating the NLCD 2019 land cover raster by a factor of 5 to produce the targe 
grids resolution of 150m * 150m. Thus, the range of each land cover predictor is [0, 25] since each 
target grid consists of a total of 25 original 30m * 30m grids (Figure 8(c.1) – (c.3)). Figure 8(b) 
shows the INLA mesh that required to solve the SPDE associated with the Matérn random field. 
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Figure 8. HPSDRM model input: (a) polygon response data is the tract population; (b) INLA mesh 
for solving SPDE of Matérn spatial field; (c.1) - (c.3) land cover predictors data. 
 

The summary of the model-fitted results are presented in Figure 9. The MMAP estimates 
and standard error of the model’s fixed effects, including the intercept, three land cover predictors, 
two hyperparameters for the Matérn field, and two hyperparameters for the CAR field are revealed 
in Figure 9(a). Figure 9(a) suggests that MMAP estimates for the hyperparameters of the random 
effects generally have more considerable uncertainties than the MMAP estimates for the land cover 
and the intercept coefficients. Figure 9(c.1) – (c.6) exhibit the priors and posterior samples drawn 
from the asymptotic normality posterior distribution for all the (hyper)parameters except the range 
and scale for the Matérn field. The red dotted vertical line is the MMAP estimate for the parameter 
(Figure 9(c.1 – (c.6)). All parameters’ posterior samples were restricted well within the prior, 
indicating that the prior is noninformative enough without biasing the parameters’ inferencing 
process. The model’s out sample performance was evaluated by comparing the true block 
population and the predicted block population shown in Figure 9(b). The blue line is the 𝑦𝑦 =  𝑥𝑥 
and the black dots are the true and predicted population value for each block (Figure 9(b)).  A clear 
positive correlation between the true and predictions suggests that the model successfully 
interpolated grids population in each tract with good accuracy. 
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Figure 9. Summary of model fitting posteriors: (a) fixed effects parameters; (b) model out sample 
performance assessed by block population; (c) (hyper)parameters priors and asymptotic normality 
posterior samples. 
 

Figure 10 presents the model prediction results and the decomposition of the latent surface 
contributions by the land cover covariates, the Matérn random field, and the CAR random field. 
Figure 10(a) suggests that for each tract, there are significant heterogeneities in population 
distribution, which cannot be revealed in Figure 10(a). The land cover covariates’ contributions 
show similar trends as the grid’s population prediction, explaining the most variances of the 
model’s latent surface (Figure 10(b)). Additionally, the Matérn random field plays an essential role 
in incorporating the spatial autocorrelation pattern at the grid level, although the scale of the 
Matérn field is minor (Figure 10(c)). Figure 10(c) shows that the population tends to be similar 
and clustered in the downtown area and the southeastern part of Davidson County, supporting the 
distribution pattern revealed in Figure 8(a). Regarding the CAR random effects contributions, 
similar patterns can be identified that tracts surrounding the downtown area and the south part of 
the county force the population distribution to be similar. In conclusion, the areal level CAR spatial 
dependence and the grids level spatial autocorrelation are crucial in determining the finer grid 
population distribution characteristics.  
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Figure 10. HPSDRM model mean prediction decompositions: (a) HPSDRM disaggregated grids 
mean population; (b) land cover covariates contributions to the model’s latent surface; (c) Matérn 
random field mean contributions to the model’s latent surface; (d) CAR random field mean 
contributions to the model’s latent surface. 
 

Finally, uncertainties predictions were computed based on the sampled prediction 
realizations shown in Figure 11. For each grid, confidence levels at 0.025 and 0.975 of the 
prediction realizations are shown in Figure 11(a), and four examples of prediction realizations are 
revealed in Figure 11(b.1) – (b.4). By comparing the two confidence levels predictions in Figure 
11(a), areas with more prediction confidence and uncertainties can be easily identified. In this case, 
most areas have relatively small disaggregation prediction uncertainties (Figure 11(a)).  
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Figure 11. HPSDRM model uncertainty predictions: (a) confidence interval of model predictions; 
(b) visualization of 4 sampled prediction realizations. 

5. IMPLICATIONS AND FUTURE CONSIDERATIONS 
 

This project adopted an inductive model structure to incorporate a series of indicators 
related to real and behavioral aspects of the community social fabric concept to compute a 
quantitative social fabric index model (SoFI). Using this proposed model, we produced a census 
tract-level social fabric map of Davidson County, Nashville, a large inland river city as a case 
study. The interest was to better understand to what extent an extensive home buyout program to 
mitigate flood damages has impacted the social fabric of the community.  The intent was to 
demonstrate the potential unintended social impacts of such programs on communities.  While it 
is important to remove individuals from harm’s way, it is just as important to consider the impacts 
of such actions on individuals and their connectedness to others and community assets/resources.  
Such practices are becoming more commonplace in riverine communities as we observe more 
intense flooding associated with climatic changes. 

To validate the model’s robustness for future applications and transferability, we utilized 
an internal validation path, using uncertainty analysis and global sensitivity analysis to 
systematically assess the construction alternatives associated with model configurations. A 
physical indicator-based social fabric index is a starting point to uncover the influences of hazard 
mitigation strategies like home buyouts on a community’s social capital and cohesion, which has 
been overlooked by previous studies. We found that our proposed SoFI model presents a high-
quality social fabric map highly correlated to the community’s urban and rural characteristics. 
However, although the SoFI can provide valuable information of a community’s social fabric 
status from a physical and behavior perspective, the emotional and psychological attachment to 
the places might be neglected by the current model. As such, the effects of the emotional and 
psychological indicators on the model remain unknown and should be investigated in future work.  

The goal of this project also included applying the uncertainty and global sensitivity 
analysis to evaluate and visualize uncertainty for an inductive social fabric index model. We used 
a Monte Carlo simulation experiment to assess five sources of epistemic uncertainty: indicator 
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normalization, indicator transformation, PCA selection, PCA rotation, and weighting scheme. 
Overall, the simulation results suggest a larger uncertainty in areas of a worse social fabric, 
indicating that proper use of the SoFI model as a screener to filter out the moderate and high social 
cohesive areas from the consideration, so further investigations can recognize those vulnerable 
social cohesive areas. Meanwhile, the global sensitivity analysis results indicate that only some 
stages of index construction process are important for model’s output uncertainty. The indicator 
transformation and weighting scheme are the two crucial uncertainty contributors in all the 
construction stages. However, these two model parameters contribute differently under different 
circumstances. For instance, SoFI model focused on mapping social fabric status on a 
heterogenous scale might suffer less epistemic uncertainty from the weighting scheme stage than 
mapping on the standard homogeneous scale. Likewise, the transformation is not considered as an 
uncertainty factor for the SoFI model explicitly designed for application at a particular 
homogeneous spatial scale.  Future work aims to validate this hypothesis by applying SoFI model 
to more case study areas with various community social characteristics.  
 The project also developed a geo-spatial disaggregation model to interpolate population 
for a more realistic distribution across the space. We proposed a hierarchical Poisson Spatial 
Disaggregation Regression Model (HPSDRM) to incorporate land cover covariates and spatial 
autocorrelation characterizations of two spatial scale levels. The proposed HPSDRM was applied 
to the Davidson County, Nashville, at the census tract level to disaggregate the tract population to 
finer grids population with a 150m x 150m resolution. The predicted grid population map 
successfully reveals the heterogeneity as well as hotspots and cold spots of the population 
distribution within the tracts. This suggests that spatial autocorrelation is indispensable in 
conducting the spatial disaggregation task. The proposed HPSDRM is expected to be readily 
applied to various disaggregation schemes, including other socioeconomic indicators of various 
composite index models. 
 In summary, this project has led to creation of both a SoFI and means to disaggregate 
census data to further investigate the potential impacts of programs such as buyouts on community 
vulnerabilities and in turn, potential resilience to inland waterway flooding. However, these 
models are only conceptual tools to advance the current flood mitigation strategy evaluation 
framework.  The approaches could be applied to other areas with flooding to more wholistically 
consider the implications of mitigation strategies on vulnerable populations.  Additional research 
could focus on applying the computational model and spatial disaggregation methods to 
investigate the effects of flood mitigation strategies like home buyouts on other communities along 
inland waterway and coastal areas. For example, the SoFI model and the HPSDRM could be 
utilized together to compare the pre-flood and post-flood social fabric status change at a localized 
level, especially for those communities with lower populations that may be more severely 
impacted with frequent flooding and where buyout programs may lead to decrease in population , 
connectedness, as well as the local tax base.  
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