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ABSTRACT 
 
Ports play a vital role in the economy of nations and provide a critical link in the supply chain. 
Ports form the gateway by which essential goods are received within large geographic regions. 
Because of their function, ports are exposed to substantial risk of flooding, storm events, sea-
level-rise, and climate change. The resiliency of ports is essential for the economy, the people, 
and national readiness. The contribution of this research work is in providing a methodology to 
quantify port resiliency that is applicable at the individual port level and regionally. The 
research approach first defines a quantifiable measure of systematic resiliency. Then applies 
this measure to quantify the resiliency of six ports located in the Southeast US impacted my 
Hurricane Matthew (2016). Based on the analysis of these individual ports, a regional resiliency 
assessment is then applied to quantify the regional resiliency of the impacted area. In general, 
the results showed that regionally, ports are more resilient to disruptive events than the 
individual ports that make up the region. This was likely because as one port enters the 
disrupted state, another may be entering the recovery state providing regional continuity. This 
may suggest that port clusters rely upon each other during disruptive events to increase the 
overall resiliency of waterborne commerce. In general, the study ports struggled to absorb the 
impact of the storm and subsequent closures, whereas adaptability and recovery were 
significantly higher. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



1. INTRODUCTION 
 
The need to enhance resiliency within the transportation systems and their management 
capabilities is vital toward providing safe, reliable mobility. Traditionally, civil infrastructure has 
included design limits that anticipate the reality of continually changing conditions. When these 
design limits are reached, the resulting disruption often has a significant impact on system 
performance. Minor disruptions to the transportation systems have generally been tolerated by 
the public as routine. Flight cancelations, delayed shipments, lane closures, and power outages 
are tolerated as everyday occurrences to be expected with the movement of people and goods. 
Global climate change and an increase tendency toward urbanization are likely to increase the 
rate of disruptions within the transportation system. 

Ports are a vital piece of infrastructure for many nations. In 2014, seaports contributed 
to 26 percent of the United States’ $17.4 trillion economy. Ports help to deliver essential goods 
including food and gasoline to major distribution hubs to be sent throughout the country. Ports 
employ 23.1 million people and contribute $1.1 trillion to personal wages and local 
consumption [1]. In the United States, there are 29 ports on the West Coast and 16 between 
the East Coast and Gulf of Mexico [2]. Ten metropolitan ports across the country account for 60 
percent of international goods arriving in the country by sea, air, and road [3]. 
Ports are also vulnerable to disruptive events. In the last 26 years, sea levels have risen 2.6 
inches [4]. With rising sea levels, major hurricanes (category three or higher) in the Atlantic 
have increased 74 percent [5]. The increase in major storms has made the need for resilient 
marine transportation systems even more vital. The proximity of ports to other major bodies is 
affected by storm surge and changing currents and tides. In addition to the economic impact of 
port disruptions, the environmental effects that could occur within the waters also threaten the 
ecosystem. Furthermore, as elements of an interconnected system of channels and waterways, 
ports play a critical role in supply-chain.  

Hurricanes, oil spills, and labor disputes can all be sources of port disruptions. Hurricane 
Sandy in October 2012 closed the Port of New York/New Jersey for over a week from full 
operations. The hurricane caused flooding, loss of power, and damages to the port that 
prevented the ports from reopening immediately. It was estimated by the Port Authority of 
New York and New Jersey (PANYNJ) that the port closure cost $170 million [6]. Between the 
time the port partially reopened (three days after landfall) and the time the port returned to 
full operation (eight days after landfall), dwell times of vessels trying to enter the port climbed 
as high as 50 hours Error! Reference source not found.. The overall impact of a disruption on a 
port is a function of vulnerability of the port and the severity of the disruption. The resiliency of 
ports and inland waterways is critical for maintaining the flow of essential goods throughout 
the United States and is critical to national security and defense readiness.  

The goal of this research is to investigate regional disruptions to port clusters, areas of 
the country with multiple ports servicing the same region. The contribution of this research is 
to empirically show how port clusters rely upon each other during disruptive events to increase 
the overall resiliency of waterborne commerce. The National Science Foundation’s (NSF) 
definition of resilience as “the ability to prepare and plan for, absorb, recover from, or more 
successfully adapt to actual or potential adverse events” [8]. This definition of resiliency is 
intuitive, succinct, and comprehensive. It signifies the ability to “bounce back” after a disruptive 



event. However, it lacks any quantitative reference. Given the NSF definition, there is no way to 
measure resiliency, as it is a combination of several, often abstract, concepts. However, when 
assessing the operations of real systems, the measured loss in functionality resulting from a 
disruption can be quantified. Furthermore, the system’s ability to absorb, recover, and adapt 
can also be measured. There is a need for methods and practices that can quantify the 
resiliency of ports by unifying the concepts of absorption, adaption, and recovery and that also 
reflect the impact of planning and preparation efforts. This research presents a novel approach 
to quantifying regional port resiliency by addressing the quantification shortcoming. 
 
2. LITERATURE REVIEW  
 
Broadly, the literature review exams four general areas of research. The first section presents 
prior work attempting to quantify port resiliency. The second section investigates the modeling 
of port operations and the third section focuses on estimating port performance and 
assessment. The final section explores prior work conducted using automatic identify system 
(AIS) data. Each of these topics are described in detail in the sections that follow. 
 
2.1 Quantifying Resiliency 
In the United Kingdom, 95 percent of supplies come by sea, including over one third of the UK’s 
food supply, making continuous port operations a necessity for the sustainability of supply 
chains, economy, and port business. The resilience of UK ports relies on multiple, 
interdependent stakeholders. Kamal Achuthan (2011), has created a methodology for assessing 
resilience of seaports (MARS). Assessing the resilience of seaports is necessary for stakeholders 
to improve the resilience of ports by assessing and developing contingency plans. MARS is 
capable of modeling both wet-side and dry-side operations before, during, and after a disaster. 
It is based on existing data already collected for port operations management. The user must 
input downtimes or port resources affected and tolerable limits for the complete port system 
and individual stakeholders. MARS will model the delays and queues in operations and the 
stakeholders must determine if the delays and queue lengths are acceptable for their system. 
Assessing the delays and queues allows the user to alter downtime inputs, until recovery time 
objectives can be me. 

According to Morris et al. (2016), a Resilience Index is an indicator of a Port 
organization’s ability to reach and maintain an acceptable level of functioning and structure 
after a disaster. The Ports Resiliency Index (PRI) is a self-assessment tool for determining if 
Ports and the regional marine transportation sector are prepared to maintain operations during 
and after disasters. This assessment is to be completed with a group of internal and external 
Port stakeholders. The PRI is capable of identifying strengths and weaknesses in management 
and operations, assessing the overall resilience of the port industry, and identifying action items 
the industry should work towards to address system vulnerabilities and maintain long-term 
viability. It is recommended that the PRI be revisited every 1-2 years. The method in which the 
PRI was developed consisted of a checklist of possible indicators of resilience for ports taken 
from the American Association of Port Authorities 2006 Emergency Best Practices Manual, the 
NOAA Port Resilience Planning Tool, and academic sources. Leaders in the ports and marine 
transportation industry were also asked to identify measures of resiliency. These indicators 



were written in the form of ‘yes’ or ‘no’ questions and grouped into broad categories. The Port 
Resiliency Index is determined using a percentage system. The Resilience Index is identified as 
LOW, MEDIUM, or HIGH in different categories. A high Resilience Index indicates a Port is well 
prepared for a disaster and will likely reopen with few difficulties [10]. 

The community self-assessment Resilience Index by Seimpier et al. (2010), provides 
community leaders a simple method of predicting if their community will reach and maintain an 
acceptable level of functioning after a disaster. This assessment does not claim to replace a 
detailed study. When this self-assessment is completed, a Resilience Index will be assigned to 
determine how long it may take a community to provide basic services and reoccupy homes 
and businesses after a disaster. These indexes are defined as LOW, MEDIUM, or HIGH [11].  
Seaports and their intermodal connectors support the global supply chain and provide regional 
economic activity. According to Wakeman et al. (2015), climate change and the disruption of 
major weather events bring a need for enhanced coastal resilience. They define disaster 
resilience “the ability to prepare and plan for, absorb, recover from, and more successfully 
adapt to adverse events,” and that “enhanced resiliency allows better anticipation of disasters 
and better planning to reduce disaster losses – rather than waiting for an event to occur and 
paying for it afterward” [12]. The objective of the Resiliency Assessment and Planning Tool is to 
create a standardized framework for resilience in transportation systems that integrates 
physical infrastructure and social systems. This was done by gaining information from 
stakeholder interviews and workshops to create flow charts that show links between social and 
infrastructural assets that provide rapid recovery on the coast after major events. The 
Resiliency Assessment and Planning Tool determines a numerical value for resilience that is 
determined by functionality and not infrastructure [12].  

The Department of Homeland Security along with its partners, has developed a 
scorecard method for quantifying resiliency using spatial evaluation. The goal of this scorecard 
method is to help communities identify conflicting policies in respect to disaster protocol for 
different departments in the community. Physical and social vulnerability areas should be 
mapped by each department and compared to reveal vulnerability hotspots. Each disaster plan 
is scored and the community as a whole receives a score for resilience. This method utilizes 
spatial mapping to generate a resilience values [13]. 

The United States Army Corps of Engineers has created a three tier approach for 
quantifying resiliency. They assessed multiple quantification methods already in use, and 
modified them to fit their needs. Their resilience matrix consists of 16 cells that cover the 
preparation, absorption, recovery, and adaptation of a system within physical, information, 
cognitive, and social domains. A percentage value is then assigned to each cell and the rating of 
“poor”, “moderate”, or “good” is assigned. This method of quantification differs from the 
Resiliency Assessment and Planning Tool as it does not output a numerical resiliency index 
value for the system and the inputs are based off stakeholder feedback [14]. 
 
2.2 Port Modeling 
The planning and management of port terminals can be modeled with social, economic, 
environmental, and institutional variables using Bayesian Networks. Bayesian Networks are 
used to make optimal decisions by introducing possible actions and the utility of their results. 
This method developed by Molina Serrano et al. (2018), allows for estimating the probability of 



unknown variables, based on their relationship with known values. The method used generates 
more than 40 port variables classified as social, economic, environmental, and institutional, and 
creates a non-cyclic conducted graph. This allows for port variable parent-child relationships to 
be known. Economic variables represent the parent role in most cases as they are the cause of 
the rest of the variable typologies. The Bayesian Network allows uncertainty to be modeled in a 
probabilistic way based on variable relationships [15]. 

The national freight transportation system represents about 9.5 percent of GDP in the 
United States and is responsible for about 8 percent of greenhouse gas emissions. Efficient 
design and operation of the national freight transportation system is critical to the stability of 
the United States. Wang et al. (2018), developed a mathematical model to estimate 
international and domestic freight flows across the ocean, rail, and truck routes. This 
mathematical model can be used to study the impacts of changes in the infrastructure of the 
United States, as well as the results of new user fees and changes in operating policies. The 
model develops a solution that is demonstrated on a large scale for all intercity freight and U.S. 
export/import containerized freight. Flow volumes are then compared to the model’s results. In 
this study, Wang et al. applies the mathematical model to two case studies: (1) a disruption 
from an earthquake at the seaports of Los Angeles and Long Beach; and (2) the implementation 
of new user fees at the ports in California [16]. 

A comprehensive traffic network model within a port city has been modeled by Bela et 
al. (2018), to estimate emissions of trucks and passenger cars. The model generates, 
distributes, and assigns trucks and passenger cars to a traffic network within the port city of 
Halifax, Canada. Unique data sources are used to determine truck trip generation and 
distributions within the network. It was found that 48% of total truck trips occur during the 
mid-day peak period and emissions are significantly affected by the truck volume of the entire 
network. This paper also examines emissions within Traffic Analysis Zones in the hopes of 
determining policy direction for future emission reduction strategies [17]. 
 
2.3 Quantifying Port Performance 
The performance of maritime ports is often measured with indicators such as container 
throughput and facility productivity. A quantitative measure of port performance is of great 
importance for models of port operations. Chen et al. (2016), proposes to derive port 
performance indicators from vessel GPS traces and maritime open data. Port performance 
indicators include ship traffic, container throughput, berth utilization, and terminal 
productivity. These indicators are directly related to vessel counts and the amount of 
containers handled. The authors propose the container-handling events at terminals are the 
basis of a quantified port performance measurement. Strengths and weaknesses of different 
terminals are compared to benefit terminal productivity, linear schedule optimization, and 
regional economic development planning. The methodology for this study consists of large-
scale, real-world GPS traces of containerships at major container ports. Variation of data from 
ports throughout the world, from different times of year, and from various maritime open data 
sources validate the study. The authors found that the proposed framework can accurately 
estimate port performance indicators and compare port performance rankings and regional 
port performance rankings [18]. 



Efficient cargo transfers are critical to port performance. There are many diverse ways to 
measure port performance and efficiency, Ducruet et al. (2014), proposes a method that is 
based on turnaround time. This study hypothesizes that turnaround time efficiency of individual 
ports may exhibit certain commonalities functionally and/or regionally outside of individual 
situations. An overview of time efficiency in world container ports is analyzed for 1996, 2006, 
and 2011 to identify possible determinants of time efficiency, such as the volume of traffic and 
size of vessels [19]. 

The capacity utilization of a seaport can be found using well-known standard queuing 
models following the methodology proposed by Layaa et al. (2014). The authors of this study 
used the seaport of Dar es Salaam (Tanzania) as a case study. Historical data on Dar es Salaam 
terminal performance for the general cargo and the container terminal has been analyzed to 
validate the model. Using standard queuing models, this study found that the Dar es Salaam 
terminal capacity was underutilized and vessels were subjected to lengthy queues. While a 
standard queuing model can be used to quickly evaluate seaport terminal capacity, actual ship 
arrivals and service time distributions require further analysis [20]. 
 
2.4 Utilization of Automatic Identification Systems (AIS) data 
Automatic Identification System technology can provide commercial vessel trajectory data that 
is valuable for research. Zhao et al. (2018), presents an algorithm that can be used to compress 
this data from its large, inefficient, initial form. The improved Douglas-Peucker algorithm takes 
vessel trajectory data and makes it easier to store, query, and process. A case study of AIS data 
gathered over the duration of a month in the Chinese Zhou Shan Islands proves that the 
Douglas Peucker algorithm can effectively compress ship trajectory information [21]. AIS data 
has also been used to help prevent vessel collisions. Altan et al. (2018), found a solution to 
distribute vessels in congested waterways to avoid collision [22]. 

Automatic Identification System receivers collect vessel movement information that can 
be used to classify vessel motion patterns. A study by Chen et al. (2018), presents a method to 
aid in automatic vessel motion pattern classification in inland waterways. The first step is to use 
the Least-squares Cubic Spline Curves Approximation technique, followed by a traditional 
classification model based on Lp-norm sparse representation, and the Matching Pursuit-
Fletcher Reeves method. The model created was validated with two AIS datasets from the 
Yangtze River. Following the previously stated methodology, the proposed model was found to 
effectively classify vessel motion patterns in inland waterways [23]. 

Data from Automatic Identification System technology is critical in collision avoidance, 
risk evaluation, and navigation behavior study. However, raw AIS data contains outliers and 
errors that can result in erroneous conclusions. Zhang et al. (2018), proposes a three step 
process to produce a valid multi-regime vessel trajectory reconstruction model. The first step is 
outlier removal, followed by ship navigational state estimation, and vessel trajectory fitting for 
different navigation states, namely hoteling, maneuvering, and normal-speed sailing. This 
proposed model was validated with a large AIS dataset containing movements of more than 
500 ships in Singapore Port. The created model was then compared with three other popular 
trajectory reconstruction models based on the same dataset. The authors found that their 
proposed model performed significantly better than the popular linear regression model, 
polynomial regression model, and weighted regression model [24]. 



 
3. METHODOLOGY 
 
The research approach first defines a quantifiable measure of systematic resiliency. Then 
applies this measure to quantify the resiliency of six ports located in the Southeast US impacted 
my Hurricane Matthew (2016). Based on the analysis of these individual ports, a regional 
resiliency assessment is then applied to quantify the regional resiliency of the impacted area. 
The research methodology first describes the resiliency quantification process. This is followed 
by a description of the port data collection and processing for the generation of resiliency plots.  
 
3.1 Resiliency Quantification 
NSF’s definition of resiliency calls for a means of measuring the system’s ability to absorb, 
adapt, and recover. Figure 1 provides insight into how this can be accomplished. Let function 
𝜔(𝑡) represent a direct measure of system output at any time t. System S will undergo five 
distinctive states. Prior to event E (𝑡 < 𝑡𝐸), the system is operating in stable, pre-event 
conditions. After event E, output decreases as the system absorbs the impact of the disruption. 
Eventually, the system will stabilize as the effect of the disruption reaches its maximum impact 
on functionality. Therefore, for 𝑡𝐸 < 𝑡 ≤ 𝑡𝐴, the system is in the absorption state. While system 
performance is no longer decreasing, system output is still reduced from the pre-event 
conditions 𝜔(𝑡𝐴) ≅ 𝜔(𝑡𝐴+1) < 𝜔(𝑡𝐸−1). The system will remain in this disrupted state until a 
recovery action is taken 𝑡𝐴 < 𝑡 < 𝑡𝐷. The system begins to recover as functionality is restored, 
𝜔(𝑡𝐷+1) > 𝜔(𝑡𝐷). This recovery continues until the system reaches a stable recovery at 𝑡 = 𝑡𝑅. 
 
 

 
 
Figure 1: Time Dependent Resiliency Plot 
 

The system functionality between 𝑡𝐸  and 𝑡𝐴 can be used as a direct measure of absorption. In 
particular, the angle created between in the functionality plot for 𝑊(𝑡𝐸) < 𝑊(𝑡) ≤ 𝑊(𝑡𝐴).  



Figure 2 shows this angle as 𝜃𝐸𝐴 and is calculated in equation 1. As formulated, 𝜃𝐸𝐴 has a 

maximum value of 90 degrees (
𝜋

2
 radians) and a minimum value of zero degrees (zero radians). 

Therefore, the angle 𝜃𝐸𝐴 can be normalized as a value between 1 and zero by dividing Equation 

1 by 90 degrees (
𝜋

2
 radians). This results in the function taking a value closer to one when the 

loss in functionality is greatest and a value closer to zero when the functionality loss is the 
lowest. By subtracting this function from one, this is reversed, resulting in values closer to one 
representing a more gradual loss in functionality and a better ability to absorb the impact of the 
disruption. Equation 2 formulates the system’s absorption as 𝑅𝐴. 
 

 
 
Figure 2: Absorption State Diagram 

 

tan−1(𝜃𝐴𝐸) =
∆𝑌

∆𝑡
 Equation 1 

 

𝑅𝐴 = 1 − |
2𝑡𝑎𝑛−1(

∆𝑌

∆𝑡
)

𝜋
|  Equation 2 

 
The disrupted state spans the period between the absorption state and the recovery state (𝑡𝐴 <
𝑡 < 𝑡𝐷. Ideally, the disrupted state is as short as possible. The length of the disrupted state is 
calculated as 𝑡𝐷 − 𝑡𝐴. This value can be normalized as the ratio of time disrupted and the total 
time of the disruptive event. Figure 3 shows the disrupted state diagram, labeling these two 
periods. Equation 3 defines 𝑅𝐷 as the systems resiliency during the disrupted state. In the 
formulation, the ratio of time within the disruptive state to the overall duration of the event, is 
subtracted from one. This allows the formulation to take a value of one when  𝑡𝐴 = 𝑡𝐷. This is 
the ideal situation because it suggests recovery begins immediately following the absorption 
state (i.e. there is no measureable disrupted state). Longer periods of disruption result in a 
disrupted state resiliency value closer to zero. 
 



 
Figure 3: Disrupted State Diagram 

 

𝑅𝑑 = 1 −
𝑡𝑜−𝑡𝑎

𝑡𝑟−𝑡𝑒
  Equation 3 

 
The recovery state begins only after a recovery action has been taken and the system begins to 
increase in functionality. Similar, to the absorption state, the recovery state can be quantified 
as a function of the angle generated by the functionality curve as the system transitions 
between the disrupted state and the stable recovered state. This angle is defined as 𝜃𝐷𝑅̅̅ ̅̅  in 
Equation 1 and shown in the recovery state diagram (Figure 4). Again, the angle must be 

normalized by dividing the function by 90 degrees (
𝜋

2
 radians). Equation 5 provides the 

formulation for the resiliency of the recovery state. Values closer to one, represent a more 
rapid transition to the stable recovered state whereas lower values are indicative of a more 
gradual system response. 
 

𝜃𝐷𝑅̅̅ ̅̅ = tan−1 (
∆𝑌

∆𝑡
) Equation 4 

 

𝑅𝑅 = |
2𝑡𝑎𝑛−1(

∆𝑌

∆𝑡
)

𝜋
| Equation 5 

 



 
Figure 4: Recovery State Diagram 

 
The NSF defines a system’s resiliency as a function of its ability to absorb, adapt, and recover. 
This inherently suggests that a system unable to absorb, adapt, or recover is decidedly, not 
resilient. Therefore, a quantification for resiliency needs to reflect these three characteristics. 
Equation 6 provides such a formulation for system resiliency that is in line with NSF’s definition 
and fundamental to any generic system with measureable output. 
 

𝑅 = 𝑅𝐴 ∗ 𝑅𝐷 ∗ 𝑅𝑅 Equation 6 

 
This formulation of resiliency suggests that if the system is unable to absorb or adapt or 
recover, it is, effectively not resilient, 𝑅 = 0. Furthermore, this approach also allows for the 
quantification of robustness, which is defined by NSF as “the loss of service that is induced by a 
disturbance”1. The fractional area of system functionality between the disruption and recovery 
is therefore a direct measure of the robustness of the system and provided in Equation 7.  
 

𝜌 =
2 ∫ 𝜔(𝑡) 𝑑𝑡

𝑡𝑅
𝑡𝐸

[𝜔(𝑡𝑅)−𝜔(𝑡𝐸)](𝑡𝑅−𝑡𝐸)
  Equation 7 

 
3.2 Data Collection and Processing 
AIS data of vessel arrivals and departures was purchased from marinetraffic.com for six ports 
located in the Southeast US. The data purchased consisted of vessel information from January 
1st to December 31st, 2016 for the ports of Miami, Everglades, Palm Beach, Jacksonville, 
Savannah and Charleston. Vessels were separated into four main categories: container vessels, 
non-containerized cargo vessels, tanker vessels, and passenger ships. The container vessel 
category consisted of container ships, cargo/container, vehicle carriers, and ro-ro cargo vessels. 
The non-containerized cargo vessel category contained general cargo, cargo, pallet carriers, 
cement carriers, heavy lift vessels, barge carriers, bulk carriers, and heavy load carriers. The 
tanker vessel category contained oil/chemical tankers, oil product tankers, tankers, crude oil 



tankers, asphalt/bitumen tankers, and chemical tankers. The passenger vessel category 
consisted of passenger ships, ro-ro/passenger ships, and high speed craft containing more than 
50 passengers. The AIS database provided vessel arrival and departure times at the various 
ports.  
 Two measures were used to assess the performance of the ports before, during, and 
after the Hurricane Matthew event: daily vessel arrivals and average daily dwell times. The 
cumulative number of vessel arrivals was calculated for each vessel class at the study ports on a 
daily basis. Vessel dwell times were calculated as the difference between the arrival and 
departure times. Average daily dwell times were calculated for each vessel class. Both 
measures were used to generate functionality plots for each port. Regional totals and averages 
were also calculated for the resiliency analysis. 
 
4. RESULTS 
 
The results focus on containerized cargo vessel arrivals and dwell times because only this vessel 
class was pervasive at all six ports. The results first present functionality plots generated from 
the AIS data for each of the six ports. Then, resiliency measures were calculated for individual 
ports and the region as a whole. Daily containerized cargo vessel arrivals and average daily 
dwell times were used as the performance functionality measures. 
 
4.1 Daily Arrivals 
Figure 5 shows the daily arrivals for containerized vessels at each of the study ports and 
regionally. The x-axis shows the date and the y-axis provides the number of containerized cargo 
vessels arriving. Also shown on the figure is the landfall date of 10/8/2016. In the days leading 
up to landfall, the storm threatened nearly the entire eastern coast of the Southeast US, 
ultimately coming ashore in South Carolina. The dates corresponding to the event (𝑡𝐸), the end 
of the absorption state (𝑡𝐴), the end of the disruptive state (𝑡𝑂), and the end of the recovery 
state (𝑡𝑅), are also provided for the regional impact. These dates, however, were not universal 
between the six ports. Some ports felt the impact of the storm earlier or later and were 
disrupted for different periods of time. Their recoveries were also individualized. Ports further 
to the south, were generally, less disrupted than ports to the north. However, each of the study 
ports showed a measurable impact from the storm. 
 
 



 
Figure 5: Containerized Cargo Vessel Daily Arrivals 

 
Table 1 shows the resiliency results calculated for each port and the region as a whole. 

In general, closures issued by managers significantly hindered each of the port’s ability to 
absorb the impact of the storm. The average absorption was only 0.243, with the regional 
absorption calculated at 0.161. The Port of Jacksonville showed the strongest absorption at 0.5 
whereas the Port of West Palm Beach was the weakest at 0.126. The poor performance of the 
absorption was expected because closures tend to bring a sudden halt to operations. With no 
vessels arriving, a rapid drop in vessel arrivals was expected. In general, many of the ports in 
the study reopened relatively quickly, following the passage of the storm resulting in high 
disruption state values. This was expected, as many of the ports did not suffer significant 
damage and were able to resume receiving containerized cargo vessels. Recovery was also 
relatively high, with an average port recovery value of 0.859 and a regional recovery value of 
0.900. This suggest that not only were the ports able to reopen quickly after the storm, they 
were accommodating as many vessels, or in some cases even more vessels, than prior to the 
storms passing. Overall, the resiliency of each port was limited by its ability to absorb the 
impact of the event. The regional resiliency was 0.145 with the Port of Jacksonville having the 
largest resiliency value of 0.211. This was unexpected because of Jacksonville’s proximity to 
landfall. Ports Canaveral and Charleston showed the lowest resiliency values of 0.110. 
Charleston’s resiliency was limited by its ability to adapt (i.e. end the disrupted state). This was 
likely because Charleston was closest to landfall, possibly suffering infrastructure damage. 

 
 
 
 
  

 



Table 1: Containerized Cargo Vessel Arrivals Resiliency Results 

PORT OF CALL ABSORPTION DISRUPTION RECOVERY RESILIENCE 

MIAMI 0.156 1.000 0.874 0.136 

EVERGLADES 0.177 0.800 0.861 0.122 

W. PALM BEACH 0.126 1.000 0.874 0.110 

JACKSONVILLE 0.500 0.600 0.705 0.211 

SAVANNAH 0.295 0.500 0.942 0.139 

CHARLESTON 0.205 0.600 0.895 0.110 

AVERAGE 0.243 0.75 0.859 0.138 

REGIONAL 0.161 1.000 0.90 0.145 

 
4.2 Average Daily Dwell Times 
Figure 1 provides the average daily dwell times for the study ports and the region. The x-axis 
provides the date and the primary y-axis shows the average daily dwell times for the six study 
ports. The secondary y-axis shows the average daily dwell time for the region, as a whole. 
Hurricane Matthew began impacting regional dwell times on October 4, 2016. This was evident 
in a sharp spike in average daily dwell times. Diminished dwell times continued until landfall, 
corresponding with port closures. However, as the ports reopened, dwell times began their 
accent to normalcy, signifying a brief disrupted state on a regional level. By October 11, 2016 
regional dwell times generally returned to their pre-storm levels.  
 

 
Figure 6: Containerized Cargo Vessel Average Daily Dwell Times 

 
Table 2 provides the resiliency results for containerized cargo vessel average daily dwell 

times. In general, the study ports struggled to absorb the impact of the storm and subsequent 
closures. However regionally, the absorption value was significantly higher than five of the six 



study ports. The Port of West Palm Beach was the only individual port able to absorb the 
impact of the disruptive event at a higher level than the region as a whole. The disruptive state 
at individual ports was in general, longer for average daily dwell times and for vessel arrivals. 
This may suggest that while ports may be able to receive vessels, their ability to handle cargo 
may still be inhibited. Interestingly, the regional dwell time showed no disruptive state, i.e. 
recovery coincided with the end of the absorption state. This was likely because while ports to 
the south were impacted by the storm first, they reopened sooner initiating a recovery while 
northern ports were still in the disrupted state. The resiliency at individual ports was generally 
lower for average daily dwell times when compared to vessel arrivals. However, the regional 
resiliencies were much closer in magnitude.  
 
Table 2: Containerized Cargo Vessel Average Daily Dwell Time Resiliency Results 

PORT OF CALL ABSORPTION DISRUPTION RECOVERY RESILIENCE 

MIAMI 0.058 0.250 0.994 0.014 

EVERGLADES 0.049 0.750 0.935 0.034 

W. PALM 
BEACH 0.283 1.000 0.931 0.264 

JACKSONVILLE 0.038 0.400 0.965 0.015 

SAVANNAH 0.032 0.286 0.969 0.009 

CHARLESTON 0.050 0.667 0.921 0.030 

AVERAGE 0.085 0.559 0.953 0.061 

REGIONAL 0.151 1.000 0.885 0.134 

 
5. CONCLUSION 
 
Ports play a vital role in the economy of nations and provide a critical link in the supply chain. 
Often times, ports form the gateway by which essential goods are received within large 
geographic regions. Because of their function, ports are exposed to substantial risk of flooding, 
storm events, sea-level-rise, and climate change. The resiliency of ports is essential for the 
economy, the people, and national readiness. The long term contribution of this research work 
is in providing a methodology to quantify port resiliency that is applicable at the individual port 
level and regionally. 
 In general, the results showed that regionally, ports are more resilient to disruptive 
events than the individual ports that make up the region. This was likely because as one port 
enters the disrupted state, another may be entering the recovery state or stable recovered 
state. An example of this was illustrated by the low resiliency values of individual ports and the 
significantly higher resiliency values for the region. This was an expected finding, because it was 
anticipated that port clusters rely upon each other during disruptive events to increase the 
overall resiliency of waterborne commerce. 
 Based on the findings of this research it is expected the proposed resiliency 
quantification methodology can be expanded to other systems and areas of science. Future 
researchers will be able to build upon this work by identifying a level-of-resiliency measure 
based on the quantification methodology described here. This could enable a level-of-resiliency 



rating between A and F similar to the level-of-service analysis for highway systems provided in 
the Highway Capacity Manual [25]. From an application perspective, it is apparent that a 
coordinated effort is needed to maintain the resiliency of waterborne commerce during 
disruptive events. For example, during a hurricane similar to Matthew containerized cargo 
vessels could be routed away from southern ports early as the storm threatens the southern 
region. As the event progresses, cargo deliveries bound for northern ports could be sent 
southward. A coordinated effort could bring about greater resiliency and an ease of transaction 
during times of unrest and uncertainty.  
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