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ABSTRACT 

Predicting the impact of incoming tropical cyclones on ports in terms of the number of days 
underperforming is crucial for the effective management of the ports. However, existing methods 
perform undesirably due to the limited data and the inherent uncertainty associated with cyclone 
trajectory forecasting. This study applies a recommendation algorithm to address these 
challenges by focusing on predicting port impact rankings instead of predicting the duration of 
port impacts, which is often inaccurate and unreliable. First, we have collected comprehensive 
features of ports and hurricanes in the Gulf of Mexican and employed a modular time-series 
regression model to determine the duration of port impacts due to tropical cyclones, leveraging 
vessel count data extracted from the Automatic Identification System (AIS). Inspired by the 
recommendation algorithm, we recast tropical cyclones and ports as “user” and “items,” 
respectively, while the duration of port impacts represents their “interaction,” offering an 
innovative approach to model and analyze cyclone effects on ports. The Factorization Machine 
(FM) is adopted to learn the relationship between features (i.e., ports and cyclones) and 
subsequently conduct the port impact ranking. Finally, utilizing the hurricanes Alex, Ian, and 
Nicole that happened in 2022 as testing cases, the FM-based model excels in prediction 
performance and robustness against uncertainties compared to the widely used distance-based 
method. This study aims to provide port authorities and other stakeholders with a trustworthy 
tool for informed disaster management decisions, thereby enhancing port resilience. 

Keywords: Tropical cyclones; Port resilience; Impacted ranking prediction; Recommendation 
algorithm 

  



1. INTRODUCTION 
Maritime transportation system constitutes a critical component of import and export activity in 
the United States. According to statistical data from Burau of Transportation statistics, 
approximately 69% of goods traded by U.S. are conveyed through waterways, primarily utilizing 
seagoing vessels (1). More than 95% of all U.S. trade relates to maritime transport, and vessels 
move around $11.4 trillion worth of products in and out of U.S. ports annually. With its significant 
role in the economy, maritime transport is an operation-efficient, cost-effective, and 
environment-friendly transportation mode, especially for long-distance transport (2, 3). With the 
acceleration of global warming and climate change, the operation of the maritime transportation 
system confronts unprecedented challenges, such as sea level rise and frequent occurrence of 
inclement weather (4, 5). Ports are vital to maritime transportation as they facilitate the transfer 
of goods between different modes and serve as critical nodes in the supply-chain network. 
However,  ports are often located in areas prone to extreme weather events, such as coastal 
flooding, hurricanes, and tropical storms, which may lead to delays, operation disruption, or 
infrastructure damage (6–8). Port performance freight statistic programs (9) has revealed that 
the 2020 Atlantic hurricane season caused 41.1 billion dollars in total damage, and nearly every 
port along the Gulf and South Atlantic coast endured closures and operation shutdowns due to 
tropical cyclones (i.e., hurricane and tropical storm) in 2020.   

In order to enhance port resilience and minimize the adverse impact of extreme weather 
conditions on port operation, the main mitigation strategy is proactive disaster preparedness for 
both port and vessel, including port shutdown and ship rerouting (7, 10). The current hurricane 
preparation plan heavily relies on weather forecasting. For example, if the port falls within the 
forecast path of a hurricane, the port has to be closed to all vessel traffic. This approach only 
focuses on ensuring port operation safety but is ineffective in reducing economic loss due to the 
uncertainty of the hurricane prediction model (2). Moreover, the impact of tropical cyclones on 
port operations is a complicated and intercorrelated problem involving hurricane severity, 
landfall location, and port conditions. If the mitigation strategies for port disruption solely rely 
on weather forecasting, it is too simplistic and does not consider the complexity and multifaceted 
nature of port operation and disaster management (10, 11). Therefore, a comprehensive 
prediction model for port’s potential impact is imminent for efficient resource allocation and 
robust contingency planning, reinforcing the resilience of the maritime supply chain against 
tropical cyclones (12). Besides, gaining insights from the model can also assist vessels in making 
dynamic decisions about rerouting, reducing delays and economic loss from tropical cyclones (13). 

Past studies mainly tried to quantify the port impact and recovery under inclement weather 
events based on operation data, including Automatic Identification System (AIS) data and port 
throughput data (7, 14–16). Several studies collect empirical evidence on port disruption 
incidents to analyze the disruption duration pattern and resilience curve. The statistical analysis 



improves the understanding of the relationship between extreme weather events on potential 
consequences across different geographical scales. However, the understanding is inadequate to 
alleviate the adverse impact of tropical cyclones in the future. In order to better estimate the 
port performance, researchers have adopted qualitative methods, such as fuzzy analytical 
hierarch process (17), and quantitative methods, including simulation-based method (18, 19) and 
Bayesian network (20, 21) to assess the port performance under possible hurricane cyclones. 
While these studies have made contributions to port performance assessment in inclement 
weather, they are sensitive to model assumption and expert judgment, bringing uncertainty and 
subjectivity to the model. In recent decades, with the rich AIS data for vessels and the 
development of data-driven algorithms, artificial intelligence has gained increasing attention and 
depicts favorable results in port operation (22). Many studies have applied machine learning or 
deep learning algorithms to predict port or vessel operation performance, such as the estimated 
time of arrival (23, 24) and port throughput (25). Nonetheless, these studies predominantly focus 
on predictions under regular operational conditions, often ignoring the influence of adverse 
weather conditions. Current research employing machine learning techniques for managing port 
operations under extreme weather conditions is considerably limited, primarily due to two key 
challenges. First, the infrequency of extreme weather events leads to insufficient datasets, which 
hampers the effective use of data-driven approaches. Second, the challenge of appropriately 
formulating the problem of port operation amidst extreme weather has not been sufficiently 
addressed.   

Therefore, this study aims to overcome these challenges to provide a novel paradigm to predict 
port performance under tropical cyclones. From the data perspective, we select the Gulf of 
Mexico as the case and utilize five-year AIS data from 2017 to 2022 to evaluate the port 
performance. Note that AIS data for Year 2020 is neglected because the maritime transportation 
system is significantly impacted by the COVID-19 pandemic (26), making it difficult to discern 
whether the impacts were attributable to extreme weather events or the health crisis. Moreover, 
we collect comprehensive explanatory features about port infrastructure and hurricane records 
from the database of Department of Transportation (DOT) and National Hurricane Center (NHC), 
to enhance the prediction performance. In the methodology, we frame the port performance 
prediction problem as a typical recommendation problem (27). The recommendation algorithm 
is a machine learning algorithm that predicts a user’s preferences for various products. These 
predictions will then be ranked and returned to the users. Contrary to prediction models, 
recommendation algorithms do not primarily hinge on absolute accuracy (28), but rather the 
correct preference ranking holds utmost significance. The characteristic of recommendation 
algorithms could potentially be beneficial for disaster management at port operations because 
the traffic prediction model under hurricanes always performs undesirably (29). A reliable port 
impact ranking considering multiple features can be a useful tool for port disaster management, 
to inform planning and preparedness for port and vessel (30, 31). In this study, we define each 



tropical cyclone as a “user,” and each port in the Gulf of Mexico should be an “item.” The adopted 
recommendation algorithm utilizes the features from both users and items to determine the 
preference ranking (i.e., port impact ranking under an incoming tropical cyclone). In general, the 
contribution of this paper has twofold: (i) providing a unique and comprehensive dataset for port 
operation under tropical cyclones research; (ii) introducing the recommendation algorithm to 
port impact ranking issue. 

This study is organized in sections outlined as follows. In section 2, data collection and the 
framework of data processing are provided. Section 3 introduces the designed framework of the 
recommendation algorithm. Then, Section 4 shows the model performance. Finally, the 
conclusion presents the primary result and the limitation of this study. 

2. DATA COLLECTION AND PROCESSING 
In this study, we aim to make a final recommendation for port operation based on impact day 
ranking. The term “impact day” refers to the days on which a port’s performance falls short of 
normal operations due to tropical cyclones. The impact day ranking is a ranking of ports based 
on the number of impact days in descending order.   Higher ranks denote a more severe impact 
of a tropical cyclone on the port. In the context of predicting the impact of incoming hurricanes 
on ports operation, the similarity between the current hurricane and previous hurricanes, the 
similarity among ports, and historical port impact conditions are the critical indicators. Given its 
capability to consider similarities between user-item pairs and leverage their historical 
interactions for ranking user preferences towards items, the recommendation algorithm appears 
to be an apt solution in this context. Therefore, we characterize an incoming hurricane as the 
user, ports as items, and the number of impact days as the interaction. A desirable 
recommendation algorithm would accurately rank the effects of the incoming hurricane on each 
port. Specifically, the historical cyclones and ports information is combined with the forecast 
incoming hurricane path provided by National Oceanic and Atmospheric Administration (NOAA) 
to estimate the potential port impact ranking. In order to build up a more comprehensive and 
reliable model, the features of each port and cyclone should be collected. In this section, we first 
introduce the data collection and data processing for port infrastructure and tropical cyclones 
information. The processed data should be the input of the recommendation algorithm. Then, 
the approach to determine the impact day for each port due to cyclones is provided. 

2.1 Port Infrastructure Data 

The abundant oil and gas reserve and the convenience of shipping have made the Gulf Coast the 
center of the petrochemical industry and its related activities in the United States. However, 
extreme weather events significantly impact regional economies and port operations. For 
example, Hurricane Ike in 2008 caused more than 25 million dollars in damage along the coast 
and also led to hundreds of thousands of people being evacuated or losing their homes. Many 



ports on Gulf Coast closed part or all operations under Hurricane Laura in 2020. Therefore, this 
study selects 37 ports in the Gulf of Mexican, and the information on port infrastructure is 
collected from the port performance freight statistics program in U.S. DOT.   

The description of the port features is listed in Table 1. The collected features comprehensively 
describe the port condition from various perspectives, including location, function, operation 
situation, infrastructure, and harbor condition. Note that the mean, standard deviation, minimal, 
and maximal values for numerical features (i.e., annual average tonnage) are provided. 

Table 1. Descriptive statistics of port infrastructure data 

Variable Num. Prop. (%) Variable Num. Prop. (%) 
State Dominate vessel type 
Alabama (AL) 2 5.4 Tanker 15 40.6 
Florida (FL) 8 21.6 Container 7 18.9 
Louisiana (LA) 10 27.0 Dry bulk 13 35.1 
Mississippi (MS) 6 16.2 Roll-on/roll-off 2 5.4 
Texas (TX) 11 29.8 Harbor type 
Port governance River natural 20 54.1 
Other 3 8.1 Coastal natural 11 29.7 
Municipal 3 8.1 Lake or Canal 4 10.8 
Special district 13 35.1 Sea port 2 5.4 
Country 13 35.2 Harbor size 
State 5 13.5 Very small 7 18.9 
If it is container port Small 16 43.3 
Yes 12 32.4 Medium 10 27.0 
No 25 67.6 Large 4 10.8 
Annual average tonnage Shelter condition 
(millions) Average 7 33.3 
Mean Std. Min Max Good 21 56.8 
35.09 61.09 0.99 275.94 Excellent 9 24.3 

Note: Num. stands for the Number and Prop. is for proposition. 

2.2 Tropical Cyclones Data 

In this study, we collect data on 31 named tropical cyclones that have traversed the Gulf of 
Mexico from 2017 to 2022 (except for 2020). NHC has recorded detailed hurricane information, 
including trajectory and corresponding central pressure and wind speed (32). Since the 
destructiveness of tropical cyclones is strongly related to wind speed (33), we collect more 
information specifically related to wind speed rather than central pressure. Given the hurricane 
trajectory, we extract the formation datetime, landfall datetime, dissipation datetime, and 
coordinates of the critical points (i.e., formation location, maximum wind speed location, and 
landfall location). The recorded coordinates are used for further creating more interaction 
features between port and hurricane, such as the distance between the port to landfall location 
of a tropical cyclone, which is beneficial for recommendation algorithm to predict more precise 



impact day ranking. Notes that if the tropical cyclone is not landed, we calculate the distance to 
the nearest hurricane point to the coastline to replace the distance to the landfall location. Finally, 
the features of tropical cyclones are summarized in Table 2. 

Table 2.  Descriptive statistics of tropical cyclone data 

Variables Num. Prop. (%) Variables Num. Prop. (%) 
Year Saffir-Simpson hurricane wind scale 
2017 8 25.8 TS 12 38.7 
2018 5 16.1 H1 8 25.8 
2019 6 19.4 H2 2 6.4 
2021 7 22.6 H3 3 9.7 
2022 5 16.1 H4 3 9.7 
Lowest central pressure (millibars) H5 3 9.7 
Mean Std. Min Max Maximum wind speed (kts) 
976.3 26.59 914 1003 Mean Std. Min Max 
Wind speed at landfall (kts) 77.6 34.2 35 155 
Mean Std. Min Max Duration from formation to landfall (day) 
65.8 28.9 35 140 Mean Std. Min Max 
Duration from formation to dissipation (day) 4.4 3.3 0.71 15.5 
Mean Std. Min Max Distance between port and formed location (km) 
6.7 4.3 2 19 Mean Std. Min Max 
Distance between port and maximum wind speed 
location (km) 

1845.8 1570.7 42.2 7465.0 
Distance between port and landfall location (km) 

Mean Std. Min Max Mean Std. Min Max 
1131.0 823.6 8.7 3932.2 867.7 489.0 0.2 2272.3 

Note: kts is knot per second and 1 kts = 1.852 km/h. The mean, standard deviation, minimal, and maximal values are 
calculated based on collected 2017, 2018, 2019, 2021, and 2022 data. 

2.3 AIS Data 

In the above sections, features of the port infrastructure and tropical cyclones data have been 
summarized. Then we need to process the impact day for recommendation algorithm. In this 
study, we adopt the commercial vessel count in the port area as the indicator to represent the 
port performance (16). Therefore, AIS data, also known as vessel traffic data, are used, which 
tracks the location and characteristics of vessels in real time. The data is valuable for a wide range 
of maritime applications, including vessel collision avoidance, vessel assignment, and port 
management (34). Because the AIS data is from recording of datetime, GPS location, vessel type, 
speed, course, heading, and so on every 30 seconds, the AIS data for a meaningful application is 
usually oversized. For example, the original AIS data for a year is around 300 gigabytes. 
Preprocessing of the data for use in the research is, therefore, necessary in order to reduce the 
data to a meaningfully small enough, tractable scale. In this research, we applied multiple criteria 
for preprocessing (7), as shown in the following: 



• Removing the non-commercial vessel types (e.g., fishing boat, tug, and towing boat) and 
only keeping the commercial vessel types such as cargo, tanker, and container vessel. 

• Defining the port boundary by specifying a range of coordinates, then counting the 
number of active vessels within the port boundary. 

• Aggregating the hourly time-series vessel counts on a daily basis from the year 2019 to 
2022 (except for 2020). 

After the preprocessing, the daily vessel count for each port is obtained. The number of impact 
days could subsequently be determined based on the time-series data. Existing studies have used 
the threshold method (7) and Bayesian change point detection (16) to identify the impact days. 
However, they largely ignore the seasonality of time series data and are limited to certain 
distribution assumptions. In contrast, we have adopted a modular time-series regression model 
(35) to identify the impact days. The modular time-series regression model is a type of forecasting 
model that allows for different components of the time-series data, such as trend, seasonality, 
and other factors, to be modeled separately and then combined additively or multiplicatively. 
This modular approach makes it easier to interpret the model and accommodate changes in the 
data structure over time, thereby improving the model’s flexibility and forecasting accuracy. 
Specifically, the additive regression model with components for trend and seasonality is trained 
by one-year traffic counts data to learn the general pattern of the vessel count for a specific port. 
For each data point, a prediction interval can be calculated based on the specified confidence 
interval. If the vessel counts in a day that falls below the lower limit of this prediction interval, it 
indicates underperformance with confidence and therefore is classified as an impact day. 
Furthermore, if this identified impact day coincides with a period during which a hurricane 
occurred, we attribute the impact to the presence of the hurricane. In Figure 1, the time-series 
pattern is successfully captured by additive regression, with most data points lying within the 
90% confidence prediction interval. In the 2017 hurricane season, only Hurricane Harvey had a 
severe impact on the operations of Port Houston for 6 days. Note that a day with vessel counts 
exceeding the upper limit of the prediction interval is not considered as an impact day, and it is 
because of the production recapture, which means the port can make up for disruption by 
shifting more cargo when they become normally operational again (7). After analyzing all ports 
across different years, the impact day for ports under each hurricane is obtained. The mean, 
standard deviation, minimum and maximum values of the impact days for all selected ports from 
2017 to 2022 (excluding 2020) due to tropical cyclones are 0.79, 1.53, 0, and 9 days, respectively. 



Figure 1. Performance of Port Houston during the 2017 hurricane season 

3. METHODOLOGY 
Our proposed recommendation system process has three main steps, mining, retrieving, and 
ranking, as shown in Figure 2. The mining step is to collect data about ports, tropical cyclones, 
and most importantly, their interaction. The retrieving is to select a subset of relevant ports 
potentially affected by tropical cyclones to efficiently identify the likely impacted port. Due to the 
limitation of data size with only 31 tropical cyclones available, the commonly used method, such 
as user-based or item-based collaborative filtering, is hard to understand the complex interaction 
between hurricanes and the ports (36). Therefore, we define a rule to select potentially impacted 
ports from the selected total of 37 ports in the Gulf of Mexico. Based on the forecast landfall 
location of each hurricane, we select the ten nearest ports to the landfall location for training 
and ranking. Note that the port impact ranking is used for future hurricanes, and the input of the 
recommendation algorithm should be the forecast hurricane trajectory because, in a current 
situation, the trajectory would not be observed but only forecast. However, the hurricane 
trajectory prediction has inherent uncertainly(32), especially for long-term forecast periods. 
According to the forecast error statistics from NHC (37), the forecast error for 48 hours is about 
65 nautical miles (around 120 km). To incorporate the forecast error of hurricane trajectory, we 
introduce a random offset by generating a single point randomly from the coastline within a 120 
km radius around the recorded landfall location. We repeat this process ten times to obtain ten 
probable “actual” landfall locations. Each “actual” landfall corresponds to a trajectory calculated 
from its location to the port.   In this study, for each hurricane, we generate ten random landfall 
locations as input following a uniform distribution, assuming the actual landfall location is equally 
likely distributed on the coastline within the radius of 120 km to replace the actual landfall 



location. The actual location randomly generated may have an effect on the results to some 
extent. Given limited information, uniform distribution is currently an accepted assumption. 
However, the number of impact days is calculated based on the observed/recorded trajectory of 
the tropical cyclone. In other words, there are ten different landfall locations generated for a 
specific tropical cyclone, but their number of impact days is the same. Through this approach, we 
aim to enhance the robustness of the recommendation algorithm against the uncertainty 
associated with the forecasting of incoming cyclones’ paths. Finally, there are a total of 11,470 
(37 ports × 31 tropical cyclones × 10 random landfall locations) records about the instances, 
called interaction in this paper, between ports and tropical cyclones. Furthermore, we use the 
2022 data as the test dataset and the 2017, 2018, 2019, and 2021 data as the training dataset. 
Details of the recommendation algorithm and performance measures are introduced in the 
following sections. 

Figure 2. Framework of the proposed recommendation system for port impact ranking 

3.1 Proposed Recommendation Algorithm – Factorization Machine 
Factorization Machine (FM) is a machine learning model that efficiently captures higher-order 
feature interaction by factorizing the interaction matrix, making it well-suited for handling sparse 
and high-dimensional data in the recommendation system (38). Compared to linear models, FM 
can model second-order feature interaction through factorization of the interaction matrix into 
latent vectors. Therefore, FM is able to deduce interactions even with extremely sparse data. 
Note that the input of FM can be only categorical features. To generate the second-order 



interaction terms, we have discretized the continuous features in Section 2 into categorical 
measures using the 25th , 50th, and 75th percentiles in the same way as (39). 

In FM, the model is combined with a linear regression component and feature interaction 
component, as in Eq. (1). However, it will simultaneously increase the computational complexity 
due to the interaction components. Therefore, FM model the feature interaction using latent 
factors 𝑣𝑣 . Each feature 𝑥𝑥𝑖𝑖 has a latent factor 𝑣𝑣𝑖𝑖 of size 𝑘𝑘 (i.e., hyperparameter), and two features’ 
interaction are modeled as 〈𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 〉 = ∑ 𝑣𝑣𝑖𝑖 ,𝑓𝑓 𝑣𝑣𝑗𝑗 ,𝑓𝑓 

𝑘𝑘
𝑓𝑓=1 , where 〈 , 〉 is the dot product of the two latent 

factors. Finally, the number of parameters for the interaction term reduces from 𝑛𝑛 2 to 𝑛𝑛 × 𝑘𝑘 . 
Introducing matrix 𝑽𝑽 is similar to factorizing the original weight matrix of the interaction term. 

𝑦𝑦� (𝒙𝒙) = 𝑤𝑤0 + ∑ 𝑤𝑤𝑖𝑖 𝑥𝑥𝑖𝑖 𝑛𝑛
𝑖𝑖=1�����������

linear regression 

+ ∑ ∑ 〈𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 〉𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 
𝑛𝑛
𝑗𝑗=𝑖𝑖+1 

𝑛𝑛−1 
𝑖𝑖=1��������������� 

interaction 

        (1) 

Where 𝑤𝑤0 is the bias term and 𝑤𝑤𝑖𝑖 is the weight corresponding to feature vector 𝑥𝑥𝑖𝑖 . To further 
reduce the time computational complex from 𝑂𝑂(𝑘𝑘𝑛𝑛 2 ) in Eq. (1) to 𝑂𝑂(𝑘𝑘 𝑛𝑛 ) , Eq. (1) can be 
rewritten as Eq. (2) in light of (38). 

𝑦𝑦� (𝒙𝒙) = 𝑤𝑤0 + ∑ 𝑤𝑤𝑖𝑖 𝑥𝑥𝑖𝑖 𝑛𝑛
𝑖𝑖=1 + 1 

2 
∑ ��∑ 𝑣𝑣𝑖𝑖 ,𝑓𝑓 𝑥𝑥𝑖𝑖 𝑛𝑛

𝑖𝑖 � 2 − ∑ 𝑣𝑣𝑖𝑖 ,𝑓𝑓 
2 𝑥𝑥𝑖𝑖 2𝑛𝑛

𝑖𝑖=1 �𝑘𝑘
𝑓𝑓=1        (2) 

In the end, we use a stochastic gradient descent (SGD) and least squares error to train FM in this 
study. The gradients of the parameters 𝑤𝑤0 , 𝒘𝒘 , and 𝑽𝑽 are as described below: 

𝜕𝜕 

𝜕𝜕𝜕𝜕 
𝑦𝑦� (𝒙𝒙) = �

1,                    if 𝜃𝜃 is 𝑤𝑤0 

𝑥𝑥𝑖𝑖 if 𝜃𝜃 is 𝑤𝑤𝑖𝑖 
𝑥𝑥𝑖𝑖 ∑ 𝑣𝑣𝑗𝑗 ,𝑓𝑓 𝑥𝑥𝑗𝑗 − 𝑣𝑣𝑖𝑖 ,𝑓𝑓 𝑥𝑥𝑖𝑖 2𝑛𝑛

𝑗𝑗=1 if 𝜃𝜃 is 𝑣𝑣𝑖𝑖 ,𝑓𝑓 

        (3) 

3.2 Performance Measures and Baseline Method 
In this study, we evaluate the model performance in the testing dataset from two perspectives: 
first, the capability to accurately identify the actually impacted ports within the top 𝐿𝐿 ranks, and 
second, the degree of concordance between the estimated port impact ranking and their 
corresponding ranking of ground truth impact. The measures, including precision and recall, are 
introduced to assess the model’s ability to differentiate between impacted and non-impacted 
ports. Precision measures the proportion of the top 𝐿𝐿 ports estimated that are actually impacted, 
and recall is the proportion of all the ports actually impacted that are correctly estimated, as 
shown in Eqs. (4) and (5). Both measures range from 0 to 1, and a higher value indicates a better 
performance.   

precision = |𝑈𝑈∩𝐿𝐿 | 
|𝐿𝐿 | 

                (4) 

recall = |𝑈𝑈∩𝐿𝐿 | 
|𝑈𝑈 | 

                (5) 



Where 𝑈𝑈 is the set of actually impacted ports, and 𝐿𝐿 represents the set of top ports predicted to 
be impacted by incoming tropical cyclones. Here, we set the |𝐿𝐿 | = 10 for the FM-based method. 
|∙| represents the size of a set. 

Furthermore, Rank Biased Overlap (RBO) is a measure used to evaluate the similarity between 
two ranked lists while considering the importance of rank position. It quantifies the agreement 
between estimated and actual rankings of ports impacted, considering that ports ranked higher 
have higher importance. In other words, RBO provides a finer evaluation of the model’s 
performance, reflecting its ability to rank the impacted ports more accurately. 

𝑅𝑅𝑅𝑅𝑂𝑂 = (1 − 𝑝𝑝) ∑ 𝑝𝑝𝑑𝑑 −1 ∙ |𝑈𝑈 1:𝑑𝑑 ∩𝐿𝐿 1:𝑑𝑑 | 
𝑑𝑑 

𝐷𝐷
𝑑𝑑 =1                  (6) 

Where 𝐷𝐷 is the depth of the list 𝐿𝐿 , which indicates the position or rank within the ranked list. 𝑝𝑝 

is the hyperparameter, and we set it as 0.6. The range of 𝑅𝑅𝑅𝑅𝑂𝑂 is from 0 to 1, and the larger values 
indicate better performance. 

Besides, a distance-based method is selected to be the baseline algorithm in this study, which 
calculates the impact based on the distance from the landfall location to the port, as detailed 
below. The distance-based method is intuitive and widely used in real-life scenarios. A port will 
be impacted by tropical cyclones if it falls within the radius of tropical cyclones, and the severity 
of the impact increase as the port’s proximity to the landfall location decreases (40). Based on 
the definition of the hurricane strike cycle from NHC (41), the radius of the strike cycle is around 
75 nautical miles (around 140 km). Considering the secondary disaster of tropical cyclones, 
including flooding and heavy precipitation, we choose to extend the radius to 300 km, centered 
on the hurricane’s landfall location. Thus, if the distance of a port to the landfall location or 
nearest point of the cyclone is less than 300 km, the distance-based method assumes that the 
port is impacted by a specific tropical cyclone. The ranking of impacted ports aligns with the 
distance ranking, meaning that the closer the distance, the more severe the impact. 

4. RESULT AND DISCUSSION 
In this section, we use the hurricanes that happened in the Gulf of Mexico in 2022, including 
Hurricanes Alex, Ian, and Nicole, as the test dataset, as shown in Figure 3. The hurricane-related 
features for input are based on the forecast hurricane trajectory rather than the actual trajectory. 
As described earlier, in order to evaluate the sensitivity of the model to hurricane landfall 
uncertainty, we randomly generate ten landfall locations from the intersection of uncertainty 
cone of incoming hurricane and coastline, as input. An ideal method shall balance performance 
and robustness. In other words, the model shall perform expectedly well considering the 
uncertainty of the forecast hurricane trajectories. 



Figure 3. Selected ports and tropical cyclones in the Gulf of Mexico in 2022 (42) 

In Figure 4, the precision of FM-based method is lower than distance-based method under three 
hurricanes. It is because the FM-based method is more conservative than distance-based, in 
which the method assumes the top 10 nearest ports to landfall location are impacted. 
Conversely, the distance-based method only considers the port within 300 km to the landfall 
location as an impact port. Nevertheless, the FM-based method remains desirable. Taking 
Hurricane Alex as an example, there are eight impacted ports for the top 10 ranked list, of which 
the highest precision for FM-based method is 0.8 (i.e., 8/10). Despite the FM-based method 
having a lower precision than the distance-based method, it has already reached the upper-
performance threshold. Furthermore, the FM-based method exhibits relatively higher recall. A 
higher recall indicates that the model has a stronger ability to capture as many impacted ports 
as possible, demonstrating its effectiveness in capturing impacted ports. This property enables 
the port authorities to reduce the potential economic loss due to unpreparedness and 
inadequate planning.   

Moreover, the accuracy of the ranking sequence is also crucial for performance evaluation. The 
higher RBO of the FM-based method demonstrates that the proposed recommendation 
algorithm performed well not only in identifying whether a port is impacted or not but also in the 
ranking of the impact. The error bars in Figure 4 represent the standard deviation. Three 
measures of distance-based method have larger standard deviations due to the impact of 
uncertainty from hurricane trajectory forecasting. In contrast, the FM-based method generates 
results robust to input uncertainty. The upper threshold of some measures in distance-based 



method (e.g., RBO in Hurricane Nicole) is higher than in FM-based method. The result suggests 
that if a hurricane trajectory is accurate, the distance-based method is a more suitable choice. 
However, considering the existence of uncertainty and the importance of reliability in disaster 
management, the FM-based method is more desirable for predicting the impact of incoming 
cyclones on port operations. 

(a) 

(b) (c) 
Figure 4. Performance metrics of distance-based and FM-based methods under hurricane Alex 
(a), Ian (b), and Nicole (c). (Note: the actual number of impacted ports for three hurricanes is 8, 
8, 5, respectively) 

To better demonstrate the performance of the FM-based method, we randomly select three 
forecasted hurricane trajectories of Hurricane Alex within the uncertainty cone, and we list their 
estimated port impact rankings correspondingly as shown in Table 3. The detailed port impact 
rankings also show that the FM-based method outperforms distance-based method in terms of 
accuracy and robustness. The unreliability of the distance-based method may be exacerbated by 
an increase in forecasting duration because long-term forecasting often leads to amplification in 
forecasting errors. The distance-based method has two main disadvantages. First, the estimated 
port impact is unreliable, especially with long-term forecasting (e.g., 48/96-hour). If the ports 
around the Gulf prepare based on the predicted impact with it, it may lead to some ports over-
prepare while others under-prepared, both of which can increase safety risk and economic 



losses. When the distance-based method becomes reliable (i.e., under short-term forecasting), 
there may not be enough time to react appropriately, rendering the distance-based method 
undesirable overall. In contrast, the proposed FM-based method can alleviate these 
disadvantages and provide a more reliable and robust estimation of port impact ranking for 
incoming tropical cyclones. 

Table 3. Comparison of estimated port impact ranking and actual ranking 

Port 
Impact 
Ranking 

Actual 
Impact 

Distance-
based 1 

Distance-
based 2 

Distance-
based 3 FM-based 1 FM-based 2 FM-based 3 

1 Everglades Manatee PlamBeach Jacksonville Everglades Everglades Everglades 
2 PlamBeach Tampa Everglades Canaveral Canaveral Canaveral PlamBeach 
3 Canaveral Canaveral Miami Manatee Tampa Tampa Miami 
4 Miami Miami \ Tampa Miami PlamBeach Tampa 
5 Mobile Everglades \ \ PlamBeach Miami Canaveral 
6 Panama PlamBeach \ \ Manatee Manatee Panama 
7 Pascagoula \ \ \ Jacksonville Jacksonville Mobile 
8 Tampa \ \ \ Panama Panama Pascagoula 
9 \ \ \ \ Mobile Mobile Manatee 

10 \ \ \ \ Pascagoula Pascagoula Jacksonville 
Note: The names of ports are all abbreviations, and the full names should have the prefix “Port of” added before the 
abbreviation. Distance-based 1 means the port impact ranking from distance-based method based on trajectory 1 
of Hurricane Alex. 

5. CONCLUSIONS 
This study introduces a recommendation system designed to predict impacted ports in 
anticipation of incoming tropical cyclones. Traditional prediction models often fall short of 
expectations because they typically demand tremendous, detailed data. In contrast, the 
proposed recommendation algorithm circumvents the issue by focusing on predicting port 
impact ranking rather than predicting the specific duration of port impacts. In the first phase, we 
collect features pertinent to ports and cyclones and employed an additive regression model to 
identify the days impacted, as reflected in the Automatic Identification System (AIS) vessel count 
data. Subsequently, a recommendation system is proposed with two steps after data preparation: 
retrieval and ranking. In the retrieval step, ten potentially impacted ports are filtered from all 
ports based on the distance of each hurricane landfall. The ranking step incorporates multiple 
features about the ports, historical tropical cyclones, and their interaction to conduct the port 
impact ranking. An FM model is adopted to learn the mapping between input features and port 
impact rankings. An important feature of the proposed method to account for resiliency to the 
uncertainty of hurricane trajectory forecast is that we replace the actual single trajectory with 
ten forecasted, possible trajectories during our model training process. 

The performance of the proposed recommendation system is evaluated from precision, recall, 
and RBO by using the 2022 data. The results indicate that the proposed FM-based 



recommendation algorithm shows superior performance compared to the existing distance-
based methods in terms of prediction accuracy of meaningfully advanced dates and robustness 
to hurricane uncertainty. Consequently, our model can provide a trustworthy and reliable port 
impact ranking for incoming cyclones. The significance of this study is to deliver a valuable tool 
for port authorities and stakeholders in port disaster management and, at the same time, 
enhance port resilience by providing more accurate, advanced hurricane impact information. 

This study has certain limitations that may also open avenues for future research. Although a 
more reliable ranking model for port disaster management is proposed, the model currently only 
considers several critical locations of tropical cyclones (e.g., formation and landfall locations). In 
the future, a complete hurricane trajectory could be incorporated to extract more related 
features to improve the representation ability of the recommendation algorithm. Furthermore, 
applying more advanced recommendation algorithms, such as DeepFM (43) and Wide & Deep 
Learning (44), could further improve the model’s performance and shed new light on the crucial 
factors influencing port performance under tropical cyclones. 
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