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A INTRODUCTION 

The inland waterway navigation system is a critical component of the United States (U.S.) transportation 
network and facilitates the safe and efficient freight movement of agricultural, coal, petroleum, and chemical 
commodities. For example, the Mississippi River System, the primary inland waterway navigation system 
in the U.S., supports exports markets from grain producers from Baton Rouge through New Orleans, all 
the way to Myrtle Grove, LA. It serves as a crucial artery for the export of a significant portion of U.S. 
corn and soybean products. This region handles a staggering 57% of U.S. corn exports by volume, valued 
at $4.8 billion, and 59% of U.S. soybean exports, totaling $12.4 billion. Furthermore, it also accounts 
for 55% of soybean meal exports and an astounding 72% of distiller’s dried grains with solubles exports, 
making it a pivotal hub for the agricultural export market (US Department of Agriculture 2019). 

Although agricultural exports significantly contribute to the U.S. balance of trade, the industry is facing 
some challenges. One major challenge is the aging and diminishing condition of the inland waterway 
infrastructure. As time passes, the system is not as effective or resilient as it used to be. Indeed, reduction in 
this cost-effective mode of transport will make it increasingly difficult for U.S. corn and soybean exporters 
to maintain their competitive position. To restore the inland waterway navigation system to its optimal 
capacity and mitigate the risk of major disruptions, rehabilitation and construction efforts are urgently 
needed (US Department of Agriculture 2019). 

In certain regions of the inland waterway navigation system, lock and dam systems are utilized to 
uphold the required navigation channel depths, enabling towboats and barges to navigate from origin to 
destination along the rivers. Since a malfunction in a lock’s operation can have a considerable effect on 
the transportation of barges, announcements about necessary maintenance causing scheduled outages are 
typically made months or even years in advance. This allows impacted shippers who rely on waterways to 
adjust their commodity inventories or take other measures to prepare for the upcoming service disruption. 
However, unscheduled lock closures caused by weather, accidents, or mechanical failures may cause 
significant disruptions, to which carriers and shippers do not have any opportunity to quickly respond. To 
tackle these challenges, it is imperative to leverage cutting-edge technologies and robust infrastructure. One 
key technology that can prove useful in this regard is predictive maintenance that proactively detects and 
troubleshoots potential issues, thereby mitigating the negative impact of unscheduled outages of lock and 
dam systems. Moreover, upgrading and proactively repairing aging locks can greatly reduce such impact 
on inland waterway-dependent businesses (US Department of Agriculture 2019). 

Table 1 provides an overview of the lockages of vessels in a waterway for the years 2000, 2010, and 
2017 (US Department of Agriculture 2019). The data reveals a substantial decrease in the total number of 
vessels, which dropped from 231,145 in 2000 to 118,647 in 2017, along with a corresponding reduction in 
lockages from 160,640 in 2000 to 113,014 in 2017. Additionally, this table shows an increase in commercial 
lockages from 69.9% in 2000 to 79.9% in 2017, indicating a growth in commercial vessel traffic within 
the waterway. However, this increase in commercial lockages coincided with an increase in vessel delay 
during lockages from 90.0 minutes in 2000 to 121.8 minutes in 2017.Furthermore, the percentage of vessels 
experiencing some delay during lockages increased from 20.0% in 2000 to 53.0% in 2017. These findings 
suggest potential concerns regarding the waterway’s operation efficiency and economic implications. 

This work develops a Python-enhanced NetLogo simulation tool to evaluate the effects of disruptions 
caused by lock closures. Based on the simulation tool, optimal maintenance strategies that maximize the 
throughput of an inland waterway transportation system (IWTS) are determined via deep reinforcement 
learning (DRL). A case study on a critical section of the U.S. IWTS is conducted to illustrate the capability 
of the developed simulation and machine learning-based method for IWTS maintenance optimization. The 
McClellan-Kerr Arkansas River Navigation System (MKARNS) is a 445-mile waterway that connects the 
Mississippi River to the Port of Catoosa near Tulsa, Oklahoma. It has 18 locks and dams, creating a 
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Table 1: Lockage and vessel delay in the Mississippi River (US Department of Agriculture 2019). 

Year Total Vessels Total Lockages 
Commercial 

Lockages 
Average 

Delay (minutes) 

Percentage of 
Vessels 
Delayed 

2000  231,145 160,640 69.9% 90.0 20.0% 
2010  139,768 109,205 68.2% 81.0 19.0% 
2017  118,647 113,014 79.9% 121.8 53.0% 

Figure 1: McClellan-Kerr Arkansas river navigation system 

staircase-like structure allowing barges to travel from the Mississippi River to Catoosa (see Figure 1). 
The channel begins at the confluence of the White and Mississippi rivers and continues upstream through 
the White River, the Arkansas Post Canal, and the Arkansas River. The developed methodology will 
assist operators and stakeholders in maintaining the waterway’s effectiveness and ensuring the safety and 
efficiency of vessel transportation. 

The remainder of this report is organized as follows. Section 2 presents a literature review of related 
works. Section 3 describes the research problem and related practical considerations. Section 4 provides 
the details of the developed simulation and decision-making tool built upon an open-source platform. 
Section 5 presents a case study to illustrate the capabilities of the developed tool. Finally, Section 6 draws 
conclusions and outlines future research. 

B LITERATURE REVIEW 

Extensive studies have been conducted on the performance evaluation and efficiency improvement of 
an aging IWTS. The technical aspects of these studies are on traffic modeling, economic impacts, and 
performance optimization. 
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Zhou et al. (2019) compared different maritime traffic models and emphasized two major questions 
related to model development in this area; (i) what kind of vessel behavior is under study and (ii) how 
these behaviors should be modeled. To answer these questions, the inherent, static characteristics of vessels 
and those external factors that change these characteristics need to be considered. Most maritime traffic 
models consider each vessel as an agent and implement agent-based modeling to simulate the behavior 
of those vessels (Zhou et al. 2019). Carroll and Bronzini (1973) developed a computer simulation model 
incorporating the information and characteristics of commodity flows and fleets to associate each tow to 
commodities and simulate the movement of these tows through locks, ports, and gates. Taylor et al. (2005) 
developed a simulation-based scheduling system and found that due to the availability of calendar events 
and the ability to schedule multiple components with different attributes, a simulation model offers an 
excellent platform for informed decision-making on barge dispatching and boat assignments. Biles et al. 
(2004) combined Geographic Information Systems (GIS) with an AutiMod model of barge traffic and an 
Arena model for ocean-going vessel transit. Their results demonstrated that geographically referenced data 
could add more values to simulation models for modeling realism and initializing the process. 

Oztanriseven and Nachtmann (2020) investigated the economic impacts of an IWTS using their maritime 
transportation simulator (i.e., MarTranS) that integrates agent-based modeling, discrete event simulation, 
system dynamics, and multiregional input-output analysis. To demonstrate MarTranS, a case study of the 
MKARNS was conducted, revealing the system is not sustainable without future investment in the river. 
Azucena et al. (2021) developed a simulation model to investigate the impacts of waterway disruptions on 
multimodal transportation systems by predicting the occurrences of extreme natural events (e.g., flooding) 
using a spatiotemporal model. 

Regarding IWTS performance optimization, the related problems can be tackled from different angles 
(Bu and Nachtmann 2021): (i) intermodal transportation (e.g., intermodal facility location), (ii) terminal 
operations (e.g., berth allocation problem), (iii) barge management (e.g., barge capacity optimization), (iv) 
container-on-barge (e.g., environmental impact assessment), and (v) ship routing. For example, Nur et al. 
(2020) developed a multi-commodity, multi-time period model for minimizing the supply chain cost using 
the Benders decomposition algorithm. They studied both short-term operational decisions (e.g., trip-wise 
tow boat and barge assignment) and mid-term supply chain decisions (e.g., inventory management and 
transportation mode). Zhou et al. (2021) reviewed the recent works related to the integration of simulation 
and optimization of maritime logistics and pointed out five different modes of integration: (i) simulation 
for optimization output, (ii) simulation for optimization input, (iii) simulation optimization iteration, (iv) 
simulation-based optimization, and (v) optimization-embedded simulation. Especially, Bush et al. (2003) 
applied the third method to a barge traffic problem. Their objective is to minimize the cost associated with 
barge movement, including the distance traveled and the type of boat or tow that carries the barges. The 
optimization result is sent to a simulation model to ensure that the routing defined by the optimization 
model is feasible in the lower Mississippi River. This process continues until a stopping condition is 
met. Kulkarni et al. (2017) also applied the third method on port operations where the simulation model 
analyzed the performance of the gates in the port, and the optimization model investigated an efficient lane 
management policy for the gate system. In this work, we will also focus on simulation optimization with 
a goal of maximizing the throughput of an IWTS by determining the optimal sequence of maintenance 
actions on locks. 

In practice, an optimal scheduling problem involving a series of locks is quite complex and is not 
solvable in polynomial time (Passchyn 2016). Recent studies have used reinforcement learning (RL) as a 
solution alternative. For example, Hart et al. (2022) extracted vessel behavior data from the Automatic 
Identification System and formulated the reward function based on safe navigation. Their model, which 
can apply to different scenarios, uses a stochastic process to model the leading trajectory and dynamics of 
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the river. In this work, we will take advantage of simulation and RL in making maintenance decisions for 
locks. To the best of our knowledge, this is the first attempt in the area of inland waterway transportation 
and logistics. 

C PROJECT DESCRIPTION 

This work considers the operation of an IWTS involving waterways, ports and locks. Through simulation 
and optimization, the optimal sequence of maintenance and repair actions on these locks over a specific 
planning horizon is determined to maximize the throughput of the IWTS for the same period. 

The simulation model allows users to modify the cargo that a barge carries and the distribution of each 
commodity type based on demands. In addition, the number of barges transported by each towboat can 
be specified by the user before a simulation run. During simulation, the vessels are characterized by a set 
of variables, such as origin, destination, current location, distance traveled, speed, vessel category, product 
type, product weight, extreme events encountered, and total delay. As part of outputs of the simulation 
model, barge movement should be tracked through statistical analyses of these variables. 

The successful execution of vessel movement simulation requires meticulous consideration of various 
factors. These factors include source and sink nodes (i.e., origin and destination), simulation time, tow 
speed, and lock status. It is worth pointing out that along navigable waterways, there are several sites where 
the gage heights are checked for measuring water levels in real time. The measurements help operators 
make informed decisions about vessel movement (i.e., proceed or halt based on the current water level). An 
algorithm needs to be developed to ensure that the vessels adhere to a set of interaction rules between origin 
and destination, navigation time and speed, and other agents. In this work, each vessel was programmed 
to always choose the shortest path according to its origin and destination during simulation while taking 
into account factors such as waterway conditions, vessel speed, and other constraints. These complex 
considerations and interactions are critical in creating an advanced simulation environment that reflects the 
real-world dynamics of vessel movements in waterways. 

Another set of key considerations is related to repairs and preventive maintenance of locks. In this 
work, a repair crew responsible for repairs, preventive maintenance, and inspections of locks is considered 
under various practical aspects. An intuitive logic was included to handle situations where multiple lock 
failures occur simultaneously. In such cases, an automatic assignment mechanism is employed, which 
prioritizes repair on the lock with the highest importance. This prioritization strategy ensures that critical 
lock failures are fixed promptly with the goal of minimizing downtime and potential disruptions in the 
system’s operation. It is assumed that a repair action is perfect, which restores a lock’s operating condition 
to as good as new. Another consideration is the minimum time interval between consecutive preventive 
maintenance actions on each lock. The repair and preventive maintenance times are random due to the 
unpredictable nature of these tasks. Moreover, it is assumed that each inspection can be completed quickly 
(e.g., one day), and ongoing repair or preventive maintenance tasks cannot be interrupted. Once the repair 
crew is assigned to a lock, they become temporarily unavailable until the task is completed. 

The study considers a fixed annual budget for preventive maintenance and repair tasks. This budget 
constraint adds another layer of complexity to the repair and maintenance planning problem. Indeed, to 
maximize the throughput of the entire IWTS, the criticality of each lock must be taken into account to 
prioritize the tasks of the repair crew with limited recovery resources. In other words, repair and preventive 
maintenance need to be considered in a comprehensive manner by incorporating a collection of critical 
information, such as the available resources and criticality of different locks. 
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D METHODOLOGICAL APPROACH 

To simulate the operation of an IWTS, time-varying waterway conditions (e.g., water level), lock status, vessel 
movement, and availability of maintenance crew must be modeled. In addition, an efficient optimization 
technique needs to be implemented to maximize the throughput of the IWTS. Figure 2 shows the flowchart 
of the developed simulation and DRL tool. More details about the related models and optimization aspects 
are elaborated next. 

Figure 2: Flowchart of the developed simulation and DRL tool. 

D.1 Spatiotemporal Model for Water Level Prediction 

At the core of the simulation tool is its capability to predict the gage height at a measurement site. A 
Spatio-Temporal Bayesian Modelling (spTimer) method was utilized to capture the complex interplay of 
spatial and temporal correlations among the selected measuring sites considering seasonal variations. The 
key model is a hierarchical auto-regressive Gaussian Process considering spatiotemporal random effects 
with Matérn spatial correlation decay (Azucena et al. 2021). This model is estimated with Bayesian 
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methods using Gibbs sampling as implemented in the spTimer R package (Bakar and Sahu 2015). For the 
linear coefficients, time auto-correlation parameters, and pure variance effects, flat priors recommended 
as default in spTimer package were selected. Specifically, we used Normal priors with arbitrarily large 
variance hyperparameters for the linear coefficients and time auto-correlation parameter and Gamma priors 
for the pure variance effects. For the spatial correlation decay parameters, Gamma distributions were 
utilized and tuned to attain a sample acceptance rate of around 40%. 

One advantage of this method is its potential to infer gage height data from sites of interest where actual 
measurements are not available. The method utilizes the data from observed sites to generate interpolations 
for other locations along the same river. It enables stakeholders to estimate water levels in areas where 
direct measurements are unavailable and to predict disruptions at different waterway locations (Azucena 
et al. 2021). 

D.2 Modeling the Effects of Repair and Preventive Maintenance 

In practice, failures of locks are unavoidable due to aging. In this work, the distribution of locks’ time- 
between-failures was determined based on historical data. To reduce the negative impact of lock failures 
on the throughput of IWTS, preventive maintenance can be performed before locks fail. Such actions 
may reduce the ages and/or failure rates of locks to different extents. Especially, a perfect preventive 
maintenance action (or repair) will make a lock go back to its good-as-new state, while an imperfect 
preventive maintenance action (or repair) will bring the lock to somewhere between its good-as-new state 
and bad-as-old state. 

In real-world applications, a repair action is mandatory when a lock fails. In this work, each repair 
action was assumed to be perfect, which resets the age and failure rate of a lock. On the other hand, each 
preventive maintenance action was assumed to be imperfect, which resets the age of a lock but makes its 
failure rate increase faster. Such imperfect improvement can be reflected by adjusting the scale parameter 
of the lock’s probability distribution of time-between-failures. For example, if the time-between-failures of 
a renewed lock follows a three-parameter Gamma distribution Gamma(α0, β, γ) with a probability density 
function: 

f (t; α0, β, γ) = (t − γ)β −1e(t−γ)/α0 

Γ(β )αβ 
, t > γ (1) 

The effect of a preventive maintenance action on the lock’s future time-between-failures can be characterized 
by: 

αi+1 = δmαi (2) 

where the parameter 0 < δm < 1 represents the proportional reduction in the scale parameter αi−1 after the 
ith preventive maintenance action. Clearly, the failure rate after the ith preventive maintenance increases 
faster than that after the previous maintenance action. Note that α is reset to its original value α0 after a 
perfect repair. 

D.3 Development of the Agent-based Simulation Model 

Developing agent-based models (ABMs) has become a popular way of studying complex adaptive systems 
due to their capability to capture the interactions of diverse entities exhibiting complex behaviors. NetLogo 
is an open-source environment for designing and testing ABMs, implemented primarily in Java and Scala. 
It includes a range of functions and methods to support the rapid development of spatially explicit ABMs. 
The advancement of our model is rooted in its ability to integrate four different extensions of NetLogo: 
GIS (Geographic Information System), NW (Networks), and R (R Language for Statistical Analysis). 
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GIS data can be quite useful for integrating more "realistic" models and linking them to particular 
locales. By combining numerous layers of data, we are offered a visually appealing depiction of information. 
Indeed, NetLogo becomes a useful tool for geographical analysis and simulation when GIS data is used. 
Technically, the GIS extension allowed us to import vector data in the form of ESRI shapefiles and create 
several maps (e.g., the Mississippi River and MKARNS) in our simulation tool. In addition, we leveraged 
NetLogo’s graphical user interface to create a two-dimensional "world" for our simulation. A grid of patches 
represents this world, each with a unique set of coordinates (pxcor and pycor). We imported the GIS maps 
to create a graph of nodes and links, which we then used to model vessel movement (Azucena et al. 2021). 
To track vessel movement in the simulation environment, “time” must be defined. In a NetLogo model, a 
"tick" serves as a unit of time (e.g., seconds or minutes in other contexts), which ensures the uniformity 
and comparability in modeling results regardless of the hardware or software used. In this study, one hour 
equals four ticks. 

Complicated studies on a network can be carried out with the help of NetLogo’s NW-Extension. It 
provides a wide range of sophisticated functions, such as the capacity to keep track of previously calculated 
pathways, which maximizes the effectiveness of subsequent analyses. The NW extension primitives 
inherently regard all turtles and links as essential parts of the existing network; therefore, no further steps 
are necessary in the sense of treating the entire system as a single network. 

Regarding the coding effort, the R extension offers an easy way to visualize and analyze data, providing 
an alternative to the conventional process of writing data to files and then reading them back. However, 
its greatest utility comes from using R to execute agent decision-making. Moreover, this work also uses 
the pyNetLogo library, which allows NetLogo to be controlled through the Python programming language. 
Python is a popular language with a broad range of libraries to support ABM development and testing. 
pyNetLogo extends the benefits of a specialized analysis environment to a broader problem setting, making 
it a useful complement to existing connectors (Jaxa-Rozen and Kwakkel 2018). 

It is worth pointing out that our model represents a significant advancement in the field of transportation 
modeling, as it integrates the latest technologies and techniques to simulate real-world scenarios in an 
IWTS. It helps the decision maker quantify the criticality of locks by considering lock usage, historical 
maintenance records, and operational impacts of failures. Moreover, the model is robust and allows for 
flexible customization and scaling. 

D.4 Use of DRL for Maintenance Optimization 

DRL merges the power of deep learning and reinforcement learning to enable intelligent agents to learn 
decision-making skills by receiving feedback from their environment. By treating the environment as a 
Partially Observable Markov Decision Process (POMDP), DRL empowers agents with the ability to adapt to 
uncertain and dynamic situations, making it a highly flexible and versatile method for training autonomous 
agents. 

OpenAI Gym (Brockman et al. 2016) offers a standardized environment that enables easy experi- 
mentation with reinforcement learning algorithms. In addition, it provides a diverse set of environments 
with varying levels of complexity, along with a flexible framework for creating custom simulations for 
interactive problem-solving. In this work, we developed a unique environment tailored for evaluating and 
training a Maskable Proximal Policy Optimization (M-PPO) algorithm (Huang and Ontañón 2020), which 
utilizes flags to identify feasible actions based on the simulation environment as constraints and validity 
conditions. Since our problem domain involves resource allocation and budget constraints, they can be 
readily translated into action masks to ensure valid actions during simulation. 

The state represents the agent’s perception of the environment and is essential in determining the reward 
and choosing the following action. We represent the state space in this study as a binary vector, where 
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u=0 

each element corresponds to a lock in the environment. A value of “1” indicates an operational lock, while 
“0” indicates a failed lock. The action space consists of three tasks, indexed as 0, 1, and 2, representing 
no action, inspection, and preventive maintenance. Since repairs are mandatory, they are not included as 
an option in the action space. 

The advantages of updating the budget at every time step when the repair crew is active, and incorporating 
it into the optimization problem for maximizing the throughput of the IWTS, are manifold. The optimal 
maintenance planning problem to be solved via DRL can be formulated as: 

max Rewardt = Rewardt−1 − ∑[I{Fdlt > St} · Ndblt ({PMlu, Inslu,Rlu}t−1 ) 
Actions1:t l∈L 

u=0 

s.t. PMtl, j+1 − PMtl, j ≥ PMR ∀l ∈ L, ∀t ∈ T 

Rlt ≤ (1 − Sit) ∀l ∈ L, ∀t ∈ T 

Rlt ≤ ARt ∀l ∈ L, ∀t ∈ T 

Inslt ≤ ARt ∀l ∈ L, ∀t ∈ T 

PMlt ≤ ARt ∀l ∈ L, ∀t ∈ T 
Budt = Budt−1 − RCcost · Rl,t−1 − Inscost · Insl,t−1 − PMcost · PMl,t−1  ∀t ∈ T 

Rlt · (RCcost − Budt) ≤ 0 ∀l ∈ L, ∀t ∈ T 

Inslt · (Inscost − Budt) ≤ 0 ∀l ∈ L, ∀t ∈ T 

PMlt · (PMcost − Budt) ≤ 0 ∀l ∈ L, ∀t ∈ T 

(3) 

where L, B, T , RCcost , Inscost and PMcost are sets of locks, barges, time steps, and the costs for repair, 
inspection and preventive maintenance, respectively. The failure duration for each lock, denoted by Fdlt, 
can be altered, and St represents a time threshold that is determined by an expert. This threshold is utilized 
to determine if a delay should be considered significant enough to apply a penalty. Inslt, PMlt, and Rlt are 
binary variables taking “1” when inspection, preventive maintenance, or repair have been done for lock 
l at time t and “0” otherwise. Slt and ARt are also binary parameters representing the status of a lock 
and the availability of the repair crew at time t, respectively. The first constraint specifies that the points 
in time, PMtl, j and PMtl, j+1, of two consecutive preventive maintenance actions on lock l should be at 
least PMR days apart. The second constraint specifies that a repair is mandatory if there is a failed lock. 
The third, fourth and fifth constraints check the availability of the repair crew before repair, inspection 
and preventive maintenance tasks, respectively. The sixth constraint updates the remaining budget in every 
step based on the actual costs incurred from the execution of tasks, and the next three constraints check 
if the budget is sufficient for a repair, inspection or preventive maintenance on lock l to ensure that the 
project stays within the budget limits. Finally, the objective function maximizes the total reward, which is 
equivalent to minimizing the number of barges (Ndblt) that experience delays when the failure duration 
of the corresponding lock is longer than the predefined threshold St. It should be mentioned that the 
number of disrupted barges for each lock at time t is contingent upon the cumulative impact of all actions 

{PMlu, Inslu,Rlu}t−1 undertaken up to time t − 1. 

E CASE STUDY 

This study considers the Mississippi River system and MKARNS, including fifteen locks and eight ports: 
Tulsa, Fort Smith, Little Rock, Baton Rouge, Helena, Memphis, and St. Louis. There are twenty-four sites 
along this IWTS. At each site, the system checks gage heights in real time. The ultimate goal of the study 
is to optimize the sequence of preventive maintenance and repair actions on these locks over a one-year 
planning horizon to maximize the system’s throughput. 
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E.1 Data 

In this work, three main types of data were utilized for the development of the simulation and decision- 
making models. Especially, the model parameters related to vessel traffic conditions, water levels, and lock 
operations impacting the IWTS’ throughput are the most important. 

• The data for traffic conditions and waterway usage from the Civil Works Business Intelligence 
Navigation System helps understand the volume of waterway traffic and identify areas of congestion 
or inefficiency (US Army Corps of Engineers Lock Performance Monitoring System 2023). In 
this work, this information was used to set up the simulation environment and as the input for the 
optimization model. 

• The comprehensive dataset (over 315 thousand observations in total) consisting of hourly gage 
height measurements at eighteen sites from February 22, 2016 to February 21, 2018 (Azucena et al. 
2021) provides critical information about the navigability of waterways. In this work, the data 
along with waterway disruptions (i.e., floods and droughts) were used to develop the spatiotemporal 
statistical model for water level simulation. 

• The U.S. Army Corps of Engineers (USACE) Open Data for Locks provides useful information of 
lock closures due to scheduled and unscheduled maintenance (US Army Corps of Engineers 2019). 
This data is publicly available, allowing for conducting transparent and reproducible research. In 
this work, the data was used to identify the patterns and trends of lock closures, which serve as 
the basis for maintenance decision making. 

Figure 3 shows the graphical user interface of the developed NetLogo simulation tool when simulation 
proceeds under a specific vessel traffic scenario of the Mississippi River system and MKARNS. 

Figure 3: Graphical user interface of the developed NetLogo simulation tool. 

Azucena et al. (2021) took a rigorous approach to validate a spatiotemporal model developed based 
on the gage height data. Figure 4 shows the water level prediction with a 90% point-wise confidence band 
against the actual observed data in one selected site. Clearly, the prediction captures the seasonality and 
trend of the actual data, indicating that the model as part of the simulation tool is adequate for water level 
prediction. 
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Figure 4: Water level prediction (in feet) for one site using the spatiotemporal model (Azucena et al. 2021). 

A numerical experiment was conducted to fit the probability distributions of time-between-failures and 
closure duration for locks based on the data from the Civil Works Business Intelligence Navigation System 
(US Army Corps of Engineers Lock Performance Monitoring System 2023). Table 2 shows the best fits 
for these probability distributions. For the effect of imperfect preventive maintenance, we assumed that 
the proportional reduction δm ∼ Uni f orm(0.8, 1). 

Table 2: The probability distributions of failure, repair and preventive maintenance time (days). 

Time Distribution α β γ 
Time-between-failures of a lock Three-parameter Gamma 0.486 78.76 1.99 

Repair time Exponential 1/2.82 – – 
Preventive maintenance time Exponential 1/0.94 – – 

E.2 Results 

Table 3 shows the key parameters in optimizing the sequence of maintenance actions on the locks. By 
carrying out simulation and executing DRL, the cumulative reward, remaining budget, number of operable 
locks, locks’ failure rates, availability of repair crew, and number of tasks performed (i.e., inspection, 
preventive maintenance, and repair), and the optimal sequence of actions were obtained. 

Table 3: Key parameters used in maintenance and repair optimization. 

Parameter  Value Description 
T 365 days (1 year) Planning horizon 

Bud0  $50,000,000 Total budget for the planning horizon 
RCcost $150,000  Cost of each repair 
Inscost $1,000 Cost of each inspection 
PMcost $50,000  Cost of each preventive maintenance (PM) 
PMR 15 days Minimal time interval between two consecutive PMs on each lock 

Figures 5 and 7 show the six performance measures over time for one repair crew and multiple repair 
crews in turn. According to Equation (2), the reward function (upper left) is decreasing over time as more 
barges got delayed due to lock failures causing a penalty. The DRL algorithm tried to keep the reward as 
high as possible by determining the optimal sequence of repair and preventive maintenance actions based 
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on the criticality of different locks at different times. As more actions were taken, the available budget 
decreased (upper right). The results presented in the center show the number of operable locks and the 
failure rates of the fifteen locks over time, respectively. The availability of the repair crew(s) and and the 
cumulative numbers of tasks the crews performed are given in the figures at the bottom. The information 
can be used as the basis for allocating resources and scheduling appropriate actions to reduce the number 
of lock failures in a holistic way. To better illustrate the interaction between the repair crew(s) and the 
locks, Figure 6 provides a closer look at the availability of the repair crew(s) and the failure rates of two 
locks in the fourth month (day 90 - day 120). One can see that the crew(s) tried their best to reduce the 
failure rates of locks by conducting preventive maintenance and repair failed locks. However, due to their 
low availability, some failed locks may not be repaired immediately. 

Figure 5: Performance measures over the planning horizon (One repair crew). 
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Figure 6: A closer look at the crew availability and failure rates of two locks in a month. 

A sensitivity analysis of the initial budget was conducted. Table 4 shows how changes to the original 
budget may affect the crew’s subsequent actions. Table 5 shows the resulting percentage of time that each 
lock remains open over the course of a year. It is worth pointing out that such analyses provide insights 
into the adequacy of the initial budget and help identify the operation bottleneck(s) in achieving a desired 
system performance level. 

Table 4: Initial budget vs. crew actions (mean values from 10 replications). 

Initial budget # inspections # preventive maintenance # repairs 
$25,000,000  222 227 54 
$50,000,000  212 223 56 
$75,000,000  205 207 59 

Table 5: Initial budget vs. the availability of locks (mean values from 10 replications). 

Initial 
budget 

Nor- 
rell 

Wilbur 
Mills 

Joe 
Hardin 

Em- 
mett 

Sanders 
Charles 
Maynard 

David 
Terry 

Toad 
Suck 
Ferry 

Mur- 
ray 

Arthur 
Or- 

mond 

Dard- 
anelle 

Ozark 
James 
Trimble 

W D 
Mayo 

Robert 
Kerr 

Web- 
bers 
Falls 

$25,000,000 
81%  82% 80%  83%  83%  85%  84%  87%  87% 85%  83%  85%  81%  81% 84% 

$50,000,000 
81%  84% 84%  84%  88%  85%  86%  87%  85% 86%  81%  83%  75%  77% 82% 

$75,000,000 
83%  83% 81%  82%  82%  85%  82%  85%  85% 85%  82%  82%  78%  79% 83% 

The results highlight the importance of recruiting multiple repair crews in maintaining the operational 
efficiency of IWTS. Indeed, according to the findings, a single repair crew is insufficient to address the 
IWTS’s escalating disruptions caused by aging infrastructure and unforeseen natural events. As a result, 
the study emphasizes the significance of using multiple repair crews to effectively mitigate transportation 
delays and economic losses due to necessary repairs and preventive maintenance. 

E.3 Impacts/Benefits of Implementation 

By comparing the availability of the repair crew (see Table 6), it is clear that a single repair crew is idle 
40% of the time, indicating significant periods of potential activity. The use of multiple repair crews, 
on the other hand, demonstrates a significantly higher level of availability. Crew 1, Crew 2, and Crew 3 
consistently maintain high availability, with each crew demonstrating remarkable operational readiness at 
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Figure 7: Performance measures over the planning horizon (Multiple repair crews). 

83%, 83%, and 82% of the time, respectively. These figures highlight the benefits of employing multiple 
repair crews, as they have a higher level of readiness to perform maintenance and repair tasks, ensuring a 
more robust and reliable approach to reducing infrastructure disruptions and system downtime. 

In comparing the effectiveness of a single repair crew versus the deployment of multiple repair crews, 
the latter strategy clearly outperforms the former in terms of overall action completion. When comparing 
repair actions, the data shows that the multiple repair crew approach outperforms the single crew approach, 
with 73 actions completed versus 67. The most notable distinction is between Preventive Maintenance 
(PM) and Inspection (Ins) tasks. Multiple repair crews outperform their single counterpart significantly, 
with 339 PM actions and 180 Inspections completed, dwarfing a single repair crew’s 180 PM actions and 
177 Inspections. This significant disparity highlights the increased efficiency and productivity gained by 
deploying multiple repair crews, particularly in managing preventive maintenance and inspection duties 
within the specified time horizon (see Table 7). 

Figures 8 and 9 show the distribution of the number of operational locks in the two scenarios (one 
with a single repair crew and the other with multiple repair crews). For the one repair crew scenario, 
the distribution is skewed towards a lower number of operational locks, with the majority of instances 
falling within the range of 0 to 4 locks. The presence of 15 operational locks is not the dominant case 
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Table 6: Availability of repair crew(s). 

One repair crew Multiple repair crews 

The proportion of time that the 
repair crew is available 

40% 
• Crew 1: 83% 
• Crew 2: 83% 
• Crew 3: 82% 

Table 7: Comparison for the number of actions. 

Actions # actions in one repair crew # actions in Multiple repair crew 
Repair  67 73 

PM 180 339 
Inspection 177 180 

in this distribution (40.19%). In contrast, the scenario with multiple repair crews displays a more even 
distribution, with a wider spread of operational locks. The concentration is notably lower in the 0 to 4 
range and extends to higher values, indicating a more balanced operational state for the locks. Besides 
the dominant case of 15 available locks, the rest of the possible cases are evenly distributed, indicating 
a greater overall operational stability and resilience (80.63%). This comparison highlights the enhanced 
operational stability achieved with multiple repair crews, as it not only increases the overall number of 
operational locks but also reduces the vulnerability to extreme operational fluctuations experienced in the 
single repair crew scenario. 

Figure 8: Distribution of the number of operational locks (One repair crew) 

Figure 9: Distribution of the number of operational locks (Multiple repair crew) 
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F RECOMMENDATIONS AND CONCLUSIONS 

The project developed a Python-enhanced NetLogo simulation and decision-making tool that provides a 
realistic and flexible way to study the operation of an IWTS and reduce the negative economic impact of 
disruptions. Especially, by taking advantage of a spatiotemporal model capable of describing water level 
variation and probabilistic models for lock failures, the simulation tool can assess the performance of the 
IWTS under various scenarios. Moreover, the DRL approach is indeed an efficient alternative for solving 
the optimal maintenance planning problem involving a series of actions. The case study on the Mississippi 
River system and MKARNS shows that a well-scheduled series of actions will significantly improve the 
locks’ availability and thus the throughput of the entire system. 

In our future research, more advanced maintenance strategies involving different effects of maintenance 
actions will be studied. Especially, we will focus on how to effectively deploy repair teams and allocate 
shared resources to minimize the number of lock failures. 
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