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1 Project Description 

1.1 Project Overview and Objectives 
The purpose of this project is to guide strategic investment into port capacity through the development 
of a policy and infrastructure evaluation model of inland waterway commodity flows. This is 
accomplished by developing a two-stage stochastic optimization model to identify investment needs at 
the port level. The study builds on a growing body of research related to inland waterway port 
infrastructure investment. Quantifying capacity and throughput of inland waterway ports by commodity 
can identify opportunities for port infrastructure investment and economic development. 
Unfortunately, state-of-the-practice commodity flow data from shipper/carrier surveys don’t provide 
port-level estimates. In this study, we develop a two-stage stochastic model that recommends port 
infrastructure investments and estimates commodity flow in such a way that the total of the investment 
cost and the expected transportation cost are minimized. These decisions are subject to uncertainty 
observed in the demand for different commodities shipped via water while considering rail and truck 
transportation costs and network availability. The use of a stochastic model, rather than a deterministic 
model, avoids underestimation or overestimation of the supply chain costs when uncertainly exists. This 
can eventually be used to direct and prioritize investment decisions, as well as develop effective 
transportation policies.  

 

1.2 Motivation and Contribution 
In relation to the objectives of the MarTREC research program, this project contributes to the areas of 
maritime and multimodal logistics management and infrastructure preservation by providing necessary 
data for effective (1) freight planning and travel demand modeling efforts and (2) mode shift analyses.  

The proposed port throughput model is expected to close a critical gap in the ability of public sector 
decision makers to estimate port-level commodity flows and to evaluate policy and investment 
decisions regarding strategic investment in inland waterway ports. The resulting estimations of seasonal 
port-level commodity flows could be used to estimate freight-fluidity performance measures for project 
selection and prioritization by state and federal agencies (e.g., the Arkansas Department of 
Transportation (ARDOT)) and to highlight port facility improvement opportunities for private investors 
(e.g., regional economic development agencies or port operators).   

As an example of an application of the work, consider the following scenario. Based on the current 
assignment model, relatively high amounts of agricultural products were found to be transloaded at 
ports along two sections of the McClellan-Kerr Arkansas River Navigation System (MKARNS), but there 
was only one port capable of handling such products. This finding suggests opportunities for investment 

The specific objectives of this project are to:  

I. Develop a two-stage stochastic optimization model using publicly available data 
considering demand uncertainty, and  

II. Apply the developed model to inland port terminals in Arkansas to prioritize port 
infrastructure investments following a specified budget.  
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in added commodity handling capabilities at select ports. Moreover, according to the US Department of 
Energy, Arkansas has 4.5 million tons of forest products and residues which can be used to generate 
renewable energy.  But it is unclear if port infrastructure including grain elevators, silos, and other 
operational and storage equipment, along the MKARNS has the capacity to leverage this economic 
opportunity. By first using the proposed model to quantify port capacity as the tonnage by commodity 
type moved through each port during each month, it then becomes possible to evaluate opportunities 
for expanding capacity to accommodate future growth of key commodities like agriculture products and 
biomass, for example.  

The research objectives highlighted above are in line with the marine transportation system priorities 
recommended by the U.S. Committee on the Marine Transportation System (CMTS).  In particular, some 
of the recommendations highlighted by CMTS are:  i) coordinate and apply big data analytics to reveal 
research gaps and overlap, foster potential collaboration, manage knowledge, and inform decision-
making; ii) couple the newly-available vehicle probe data sets with more traditional freight data 
resources to quantify and contextualize travel times, dwell times, trip counts and other metrics; iii) 
create specific MTS system-scale performance indicators that relate to the freight flow network so they 
may be periodically updated and used for network calibration and validation; iv) develop and use 
decision support tools to identify nationally significant priority areas and project locations where 
agencies can leverage a variety of funding (U.S. Committee on the Marine Transportation System, 2022). 

1.3 Scope 
In the context of inland waterway transportation, more than 25,000 miles of U.S. inland waterways carry 
about 14% of all domestic freight, representing more than 600 million tons of cargo annually (American 
Society of Civil Engineers 2017). In particular, the methodologies developed for this project are applied 
to the Arkansas portion of the McClellan Kerr-Arkansas River Navigation System (MARNS), which 
consists of 308 miles of river, and contributes to the national economy with $4,535M in sales, $168M in 
business taxes, and 33,695 jobs (Nachtmann et al., 2015). Within the next 50 years, the net present 
value of sales, Gross Domestic Product (GDP), and generated taxes of the MKARNS are expected to be 
$232.5B, $111.3B, and $7.8B respectively (Oztanriseven et al., 2019). In 2017, the MKARNS transported 
11.5M tons of goods, equivalent to 7.7 thousand barges, 443.9 thousand trucks or 115.4 thousand 
railcars, respectively.  There are 43 freight port terminals are located along the Arkansas River (Figure 1), 
and 14 locks divide the river into 13 sections. Each lock chamber on the MKARNS is 110 feet wide by 600 
feet long and can handle up to eight barges and a towboat. The U.S. Army Corps of Engineers (USACE) 
maintains a channel depth of nine feet on the MKARNS, allowing for barges to be loaded up to 1500 
short tons (ODOT 2018). 

Commodities transported on the MKARNS include iron & steel, fertilizers, petroleum products, minerals 
& building materials, grain (soybeans, wheat, and others), equipment and machinery, etc. (ODOT 2018).  
For this project, products transported on the MKARNS are grouped into eleven categories, merging the 
Lock Performance Monitoring System (LPMS) scheme and Arkansas Statewide Travel Demand Model 
(ARSTDM) scheme (Table 1). The temporal scope is one month, and spatial scope is individual port. 
LPMS data from 2009 to 2016 was used for this study. 
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Figure 1.  Arkansas portion of the MKARNS 

Table 1.  Commodity Classification 

Commodity group 

Agriculture and Food 

Mining 

Coal 

Nonmetallic Minerals and Clay 

Manufacturing 

Lumber 

Paper 

Chemical 

Petroleum 

Primary Metal 

Miscellaneous Mixed 
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1.4 Background 
Understanding of freight supply chains is fragmented by the lack of data that connects freight modes.  
While it is possible to understand land side movements by truck using GPS data and movements along 
the navigable waterways using marine AIS data, only by examining where multiple modes meet is it 
possible to move towards more direct observation of the multi-modal supply chain.  Besides mode 
specific datasets, of which little has been done to integrate, sources of publicly available multimodal 
supply chain data are limited to periodic surveys like the Commodity Flow Survey (CFS) conducted by the 
US Bureau of Transportation Statistics. To protect the privacy of private shippers/carrier respondents, 
the CFS aggregates the US into only 123 zones, of which Arkansas is represented as a single zone.  This 
makes it challenging to disaggregate to port-level flows.  Thus, it is critical to find other means of 
gathering port-level commodity flows that are more temporally continuous and spatially disaggregate 
and that maintain anonymity of shippers/carriers. This work builds on MarTREC Project 6008 by 
incorporating observed stochasticity of model input data gathered from publicly available datasets into 
the model framework. This allows representation of uncertainty in commodity volume data so that the 
model can be used to guide policy and investment.  
 
Inland waterway ports are a critical part of the national freight network since they carry about half of 
the domestic US waterborne freight (U.S. Army Corps of Engineers, 2017). They contribute to the 
economy by moving commodities that are key to the Gross Domestic Product (GDP) of many states such 
as agriculture for Arkansas (University of Arkansas Division of Agriculture, 2021). There are both public 
and private port terminals in US inland waterway and commodity flow data collected by those inland 
waterway port operators are proprietary (Arkansas Waterways Commission, 2021) which makes it is 
challenging to understand ports' commodity throughput and capacity. Such data is valuable for 
infrastructure investment planning such as adding capacity to port servicing roads, waterway dredging 
schedules, and lock and dam maintenance programming. Furthermore, port level data enables port 
agencies and authorities to identify ports that need capacity expansion in terms of operational and 
storage infrastructures.  
 
Publicly available statistics are published by the US Bureau of Transportation Statistics (BTS) via the Port 
Performance Freight Statistics. The program provides performance statistics for the top 25 ports based 
on overall cargo tonnage, 20-foot equivalent unit (TEU) of container cargo, and dry bulk cargo tonnage  
(Hu et al., 2021). However, the statistics are limited to the top 25 ports and only few inland waterway 
ports are included in the list. Additional data for gathering port commodity flows are the US Census 
Bureau's US Port Data  (2021), Commodity Flow Survey (CFS) (U.S. Bureau of Transportation Statistics, 
2021) and Waterborne Commerce Statistics from United States Army Corps of Engineers (USACE) (U.S. 
Army Corps of Engineers, 2021b). More recently the USACE has made available monthly commodity flow 
data at lock locations through the Lock Performance Monitoring System (LPMS) (U.S. Army Corps of 
Engineers, 2021a). However, data from such sources are limited in their spatial and/or temporal 
disaggregation which makes it challenging to collect port specific data for inland waterways. For 
example, the US CFS provides a periodic five-year snapshot of commodity flows through a survey that is 
expanded to represent the population using statistical sampling procedures. Notably, the LPMS data 
give monthly tonnage reports for locks but not ports, an many ports may be located between a pair of 
locks thus limiting the insights derived for single ports. 
 
While collecting data at locks and dams may address inland waterway performance related questions, it 
alone does not help answer port specific investment questions. For example, data on commodity 
tonnage through a single lock may illuminate travel time delays across a given section of waterway. 
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However, it does not provide a means to guide strategic decisions regarding how a limited monetary 
investment (perhaps less than the amount needed to improve a single lock’s performance) can be best 
used to alleviate delays along the inland waterway system. In addition, data on commodity tonnage 
through a section of waterway between a pair of locks provide historical patterns of commodity flows 
for a series of ports (between the lock pair) but does not provide insight into the ports’ throughput to 
capacity ratio.  Thus, it would be difficult to strategically guide capacity expansion investments without 
further data on existing port-specific capacity or operational characteristics. An intuitive investment 
decision using the currently available data may be to expand the capacity of the largest port among a 
series of ports between two locks. However, such a decision may lead to a local optimal solution such as 
adding a new shipping berth to a port to alleviate loading. From a systems point of view, investments at 
other ports that have greater access to highways and railways, for example, may lead to global optimal 
solutions. Expanding port infrastructure requires large capital investment and tends to target long 
lifespans, e.g., 25 years or more. Therefore, it is imperative that port capacity expansion investments are 
neither under nor over invested.  
 
Another facet of strategic decision making in this context regards the potential for growth or decline in 
port usage as a function of overall freight shipment demand. Thus, decisions about port infrastructure 
investments, like any transportation investment, should be evaluated for differing freight demand 
scenarios that reflect the unknown nature of economically driven trends seen for freight transport. The 
demand of commodities for waterway transportation is not known in advance, and since the demand 
impacts infrastructure expansion decisions, different scenarios of demand need to be considered while 
making investment decisions. This calls for an investment model that considers several scenarios and 
provides optimal inland waterway port infrastructure investment solutions when uncertainty is present. 
 
The goal of this study is to provide a tool to guide strategic waterway transportation infrastructure 
investments decisions. These decisions are subject to uncertainty observed in the demand for different 
commodities shipped via waterways, railways and highways; as well as transportation costs and 
transportation network structure. To accomplish the goal, this study proposes a two-stage stochastic 
optimization (2-SOP) model that minimizes the total of port infrastructure investment cost and the 
expected commodity transportation cost. The 2-SOP model has two sets of decision variables, first and 
second stage variables. First stage decisions determine equipment and storage investments to increase 
capacity. These decisions are made prior to the realization of the stochastic parameter, commodity 
demand (tonnage). After the realization of uncertainty, second-stage decisions determine the flow of 
commodities via different modes of transportation (Liu et al., 2018). The use of 2-SOP model, rather 
than using a deterministic model, avoids underestimation or overestimation of the supply chain costs 
when stochastic parameters exist. In addition, 2-SOP problem mimics reality in which decisions such as 
infrastructure investments are made first and without full information about uncertainty. 
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2 Methodological Approach 
The methodology presented in this section consists of three main steps: i) Problem formulation; ii) 
Solution Approach and iii) Model evaluation. 

2.1 Problem Formulation 
We consider a supply chain network, where the nodes represent counties that have a positive demand 
and/or supply for different commodities and ports; and the arcs represent the transportation paths for 
delivering commodities. Let 𝑊𝑊 = (𝑁𝑁,𝐴𝐴) denote this transportation network where 𝑁𝑁 is the set of nodes 
and 𝐴𝐴 is the set of arcs that connect nodes of the network. Set 𝑁𝑁 =  𝐽𝐽 ∪ 𝐼𝐼 (𝐽𝐽 ∩ 𝐼𝐼 = ∅) represents the 
counties 𝐽𝐽 =  {1, 2, … , |𝐽𝐽|}, from where commodities are shipped and received via a set of land-side 
transportation modes 𝑇𝑇 =  {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅} and a set of ports 𝐼𝐼 = {1,2, … , |𝐼𝐼|}, from where commodities 
are transported via barges. Set 𝐶𝐶 = {1,2,3, … , |𝐶𝐶|} represents the set of commodity groups transported 
along network 𝑊𝑊 over a set time period 𝑃𝑃 = {1,2, … , |𝑃𝑃|}.  

We consider two transportation modes between each origin and destination pair. The first path uses 
rail, truck and waterways to deliver commodities. Rail and truck are used to deliver commodities to and 
from each port. Waterways are used to deliver commodities between ports. The second path uses rail 
and truck to deliver commodities to and from counties.  As an example, consider a supply chain network 
consisting of three counties that supply commodities via rail, truck and waterways (Figure 2). Two ports 
receive the commodities from counties and ship them via barges to two destination ports. Finally at the 
destination port, the commodity is shipped to the destination county where there is corresponding 
demand for that commodity. Any unmet demand is satisfied from counties outside the state (external 
zones).  

 

Figure 2. Network representation of supply chain 

As a demonstration of the stochastic nature of commodity flows along the waterways and 
corresponding commodity demand for counties, consider the fluctuation in commodity demand along 
the Arkansas section of the MKARNS (Figure 3). Based on this non-linear and fluctuating demand 
variation over time, the demand for each commodity is considered stochastic in our model. 
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Figure 3. Commodity demand via waterways in Arkansas section of MKARNS 

The notations used in the model formulation are summarized as follows: 
Sets: 

• 𝐼𝐼′, 𝐼𝐼′′  ports of origins/destinations of shipments (𝐼𝐼 = 𝐼𝐼′ ∪  𝐼𝐼′′) 
• 𝐽𝐽′, 𝐽𝐽′′  counties of origins/destinations of shipments (𝐽𝐽 = 𝐽𝐽′ ∪  𝐽𝐽′′) 
• 𝑃𝑃 periods in the planning horizon, 𝑝𝑝 ∈ 𝑃𝑃 
• 𝐶𝐶 commodity groups, 𝑇𝑇 ∈ 𝐶𝐶 
• 𝐸𝐸 equipment, 𝑒𝑒 ∈ 𝐸𝐸 
• 𝐹𝐹 storage facilities, 𝑓𝑓 ∈ 𝐹𝐹 
• 𝑆𝑆 scenarios, 𝑠𝑠 ∈ 𝑆𝑆 

Problem parameters: 

• 𝜔𝜔𝑠𝑠 is probability of occurrence of scenario 𝑠𝑠 
• 𝜅𝜅𝑒𝑒 is the cost of equipment 𝑒𝑒 
• 𝜄𝜄𝑓𝑓 is the cost of storage facility 𝑓𝑓 
• 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡  is the unit cost of transporting commodity via truck between county 𝑗𝑗 ∈  𝐽𝐽′ and port 𝑅𝑅 ∈  𝐼𝐼′ 

(in $/ton) 
• 𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟  is the unit cost of transporting commodity via rail between county 𝑗𝑗 ∈  𝐽𝐽′ and port 𝑅𝑅 ∈  𝐼𝐼′ (in 

$/ton)   
• 𝑅𝑅𝑖𝑖𝑖𝑖 is the unit cost of transporting commodity via barge from port 𝑅𝑅 ∈ 𝐼𝐼′ to 𝑇𝑇 ∈  𝐼𝐼′′  (in $/ton)  
• ℎ𝑐𝑐 is the unit inventory holding cost of commodity 𝑇𝑇 
• 𝜇𝜇 is the unit penalty cost for unmet demand (in $/ton) 
• 𝑅𝑅𝑖𝑖𝑗𝑗𝑡𝑡   is the unit cost for transporting commodity via truck between county 𝑗𝑗 ∈  𝐽𝐽^′ and 𝑚𝑚 ∈

 𝐽𝐽′′ (in $/ton) 
• 𝑅𝑅𝑖𝑖𝑗𝑗𝑟𝑟  is the unit cost for transporting commodity via rail between county 𝑗𝑗 ∈  𝐽𝐽′ and 𝑚𝑚 ∈  𝐽𝐽′′ (in 

$/ton) 
• 𝛽𝛽𝑒𝑒𝑐𝑐  takes the value 1 if equipment 𝑒𝑒 can process commodity 𝑇𝑇, and takes the value 0 otherwise 
• Γ𝑓𝑓𝑐𝑐 takes the value 1 if commodity 𝑇𝑇 can be stored in storage facility 𝑓𝑓, and takes the value 0 

otherwise 
• 𝛿𝛿𝑖𝑖 takes the value 1 if port 𝑅𝑅 ∈ 𝐼𝐼 has railway access, and takes the value 0 otherwise 
• 𝛾𝛾𝑖𝑖  takes the value 1 if county 𝑗𝑗 ∈ 𝐽𝐽 has railway access, and takes the value 0 otherwise 



11 
 

• 𝐵𝐵𝑓𝑓𝑒𝑒 is the minimum ratio of number of storage facility 𝑓𝑓 to number of equipment 𝑒𝑒 
• 𝑞𝑞𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠 is the supply availability of commodity 𝑇𝑇 in county 𝑗𝑗 ∈ 𝐽𝐽′ in month 𝑝𝑝 in scenario 𝑠𝑠 (in tons) 
• 𝑑𝑑𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠 is the demand of commodity 𝑇𝑇 in county 𝑗𝑗 ∈ 𝐽𝐽′′ in month 𝑝𝑝 in scenario 𝑠𝑠 (in tons) 
• 𝜁𝜁𝑓𝑓𝑐𝑐 is the normalized tonnage of commodity 𝑇𝑇 for inventory in storage facility 𝑓𝑓 
• Λ𝑒𝑒𝑐𝑐  is the normalized tonnage of commodity 𝑇𝑇 for processing in equipment 𝑒𝑒 
• 𝑅𝑅𝑓𝑓 is the storage capacity of storage facility 𝑓𝑓 
• 𝑇𝑇𝑖𝑖𝑓𝑓 is the existing number of storage facility f at port 𝑅𝑅 ∈ 𝐼𝐼 
• 𝑚𝑚𝑒𝑒  is the processing capacity of equipment 𝑒𝑒 
• 𝑛𝑛𝑖𝑖𝑒𝑒 is the existing number of equipment 𝑒𝑒 at port 𝑅𝑅 ∈ 𝐼𝐼 

Decision Variables: 

• 𝑌𝑌𝑖𝑖𝑓𝑓 is the number of storage facility 𝑓𝑓 installed at port 𝑅𝑅 ∈ 𝐼𝐼 
• 𝑍𝑍𝑖𝑖𝑒𝑒 is the number of equipment 𝑒𝑒 installed at port 𝑅𝑅 ∈ 𝐼𝐼 
• 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑡𝑡  is the tonnage of commodity 𝑇𝑇 shipped via truck from county 𝑗𝑗 ∈  𝐽𝐽′ to port 𝑅𝑅 ∈  𝐼𝐼′ and 

processed using equipment 𝑒𝑒 during period 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑟𝑟  is the tonnage of commodity 𝑇𝑇 shipped via rail from county 𝑗𝑗 ∈ 𝐽𝐽′ to port 𝑅𝑅 ∈ 𝐼𝐼′ and 

processed using equipment 𝑒𝑒 during period 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓𝑠𝑠 is the tonnage of inventory of commodity 𝑇𝑇 in origin port 𝑅𝑅 ∈ 𝐼𝐼′ in storage facility 𝑓𝑓 in 

month 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠 is the tonnage of commodity 𝑇𝑇 processed using equipment 𝑒𝑒 and transported by barge 

from ports 𝑅𝑅 ∈ 𝐼𝐼′ and 𝑇𝑇 ∈ 𝐼𝐼′′ in period 𝑝𝑝 
• 𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓𝑠𝑠 is the tonnage of inventory of commodity 𝑇𝑇 in destination port 𝑅𝑅 ∈  𝐼𝐼′′ in storage facility 𝑓𝑓 

in month 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑡𝑡  is the tonnage of commodity 𝑇𝑇 processed using equipment 𝑒𝑒 and transported from port 

𝑅𝑅 ∈ 𝐼𝐼′′ to county 𝑗𝑗 ∈  𝐽𝐽′′ via truck in month 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑟𝑟  is the tonnage of commodity 𝑇𝑇 processed using equipment 𝑒𝑒 and transported from port 

𝑅𝑅 ∈ 𝐼𝐼′′ to county 𝑗𝑗 \𝑅𝑅𝑛𝑛 𝐽𝐽′′ via rail in month 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠𝑡𝑡  is the tonnage of commodity 𝑇𝑇 shipped from county 𝑗𝑗 ∈ 𝐽𝐽′ to county 𝑚𝑚 ∈ 𝐽𝐽′′ via truck in 

month 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠𝑟𝑟  is the tonnage of commodity 𝑇𝑇 shipped from county 𝑗𝑗 ∈  𝐽𝐽′ to county 𝑚𝑚 ∈ 𝐽𝐽′′ via rail in 

month 𝑝𝑝 in scenario 𝑠𝑠 
• 𝑄𝑄𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠 is the tonnage of commodity 𝑇𝑇 shortage in county 𝑗𝑗 \𝑅𝑅𝑛𝑛 𝐽𝐽′′ in month 𝑝𝑝 in scenario 𝑠𝑠 

Our proposed mathematical model is defined as follows,  

(𝑊𝑊𝑆𝑆𝑁𝑁): min � 𝜅𝜅𝑒𝑒𝑍𝑍𝑖𝑖𝑒𝑒
𝑖𝑖 ∈𝐼𝐼,𝑒𝑒 ∈𝐸𝐸

+  � 𝜄𝜄𝑓𝑓𝑌𝑌𝑖𝑖𝑓𝑓
𝑖𝑖 ∈𝐼𝐼,𝑓𝑓 ∈𝐹𝐹

+  𝐸𝐸 �𝐻𝐻�𝑋𝑋, �̃�𝑑�� 1 

subject to: 

��𝜅𝜅𝑒𝑒𝑍𝑍𝑖𝑖𝑒𝑒
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼

+  ��𝜄𝜄𝑓𝑓𝑌𝑌𝑖𝑖𝑓𝑓
𝑓𝑓∈𝐹𝐹𝑖𝑖∈𝐼𝐼

 ≤ 𝑏𝑏 2 

𝑍𝑍𝑖𝑖𝑒𝑒 ∈ 𝑍𝑍+, ∀𝑅𝑅 ∈  𝐼𝐼, 𝑒𝑒 ∈ 𝐸𝐸 3 
𝑌𝑌𝑖𝑖𝑓𝑓 ∈ 𝑍𝑍+, ∀𝑅𝑅 ∈ 𝐼𝐼, 𝑓𝑓 ∈ 𝐹𝐹 4 
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Function (1) represents the objective function that consists of the total of first stage costs (capacity 
expansion) and the expected second stage cost (transportation costs). The first term of function (1) 
represents the total cost of installing new operational (loading/unloading) equipment and the second 
term represents the total cost of installing new storage facilities. Constraint (2) ensures that the total 
cost does not surpass the total available budget allocated for investments to improve the inland 
waterway system. Constraints (3) and (4) determine the integer variables related to the decisions on 
storage facilities and operational equipment, respectively. Let 𝒴𝒴= {𝑍𝑍𝑖𝑖𝑒𝑒 ,𝑌𝑌𝑖𝑖𝑓𝑓  | 𝑅𝑅 ∈ 𝐼𝐼, 𝑒𝑒 ∈ 𝐸𝐸, 𝑓𝑓 ∈ 𝐹𝐹} 
represent solutions to problem (1) - (4). For a given value 𝒴𝒴� ∈ 𝒴𝒴, and a realization 𝑑𝑑 of random demand 
�̃�𝑑, the following is the formulation of second stage problem 𝐻𝐻(𝒴𝒴�,𝑑𝑑). 

H(𝒴𝒴� , 𝑑𝑑) =  min�������α𝑅𝑅𝑗𝑗𝑡𝑡 𝑋𝑋𝑗𝑗𝑅𝑅𝑇𝑇𝑝𝑝𝑒𝑒𝑠𝑠𝑡𝑡 + α𝑅𝑅𝑗𝑗𝑇𝑇 𝑋𝑋𝑗𝑗𝑅𝑅𝑇𝑇𝑝𝑝𝑒𝑒𝑠𝑠𝑇𝑇 �
𝑒𝑒∈𝐸𝐸𝑗𝑗∈𝐽𝐽′𝑅𝑅∈𝐼𝐼′

+ ��ℎ𝑇𝑇
𝑓𝑓∈𝐹𝐹

𝑈𝑈𝑅𝑅𝑇𝑇𝑝𝑝𝑓𝑓
𝑅𝑅∈𝐼𝐼′

+ ��𝑅𝑅𝑅𝑅𝑇𝑇
𝑇𝑇∈𝐼𝐼′′

𝑊𝑊𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑒𝑒

𝑅𝑅∈𝐼𝐼′𝑝𝑝∈𝑃𝑃𝑇𝑇∈𝐶𝐶

+ ��ℎ𝑇𝑇
𝑓𝑓∈𝐹𝐹

𝑉𝑉𝑅𝑅𝑇𝑇𝑝𝑝𝑓𝑓
𝑅𝑅∈𝐼𝐼′′

+ ����α𝑅𝑅𝑗𝑗𝑡𝑡 𝑅𝑅𝑅𝑅𝑗𝑗𝑇𝑇𝑝𝑝𝑒𝑒𝑡𝑡 + α𝑅𝑅𝑗𝑗𝑇𝑇 𝑅𝑅𝑅𝑅𝑗𝑗𝑇𝑇𝑝𝑝𝑒𝑒𝑇𝑇 �
𝑒𝑒∈𝐸𝐸𝑗𝑗∈𝐽𝐽′′𝑅𝑅∈𝐼𝐼′′

+ ���𝑅𝑅𝑗𝑗𝑚𝑚𝑡𝑡 𝑂𝑂𝑗𝑗𝑚𝑚𝑇𝑇𝑝𝑝𝑡𝑡 + 𝑅𝑅𝑗𝑗𝑚𝑚
𝑇𝑇 𝑂𝑂𝑗𝑗𝑚𝑚𝑇𝑇𝑝𝑝𝑇𝑇 �

𝑚𝑚∈𝐽𝐽′′𝑗𝑗∈𝐽𝐽′

+ �μ
𝑗𝑗∈𝐽𝐽′′

∗ 𝑄𝑄𝑗𝑗𝑇𝑇𝑝𝑝� 

5 

subject to: 

� �𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗
𝑡𝑡 + 𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗

𝑟𝑟 �
𝑗𝑗∈𝐽𝐽′′

+ ���𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑡𝑡 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑟𝑟 �
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼′

≤ 𝑞𝑞𝑖𝑖𝑐𝑐𝑗𝑗∀𝑗𝑗 ∈ 𝐽𝐽′, 𝑇𝑇 ∈ 𝐶𝐶,𝑝𝑝 ∈ 𝑃𝑃 6 

𝑄𝑄𝑗𝑗𝑐𝑐𝑗𝑗 + ���𝑅𝑅𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑒𝑒
𝑡𝑡 + 𝑅𝑅𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑒𝑒

𝑟𝑟 �
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼′′

+ ��𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗
𝑡𝑡 + 𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗

𝑟𝑟 �
𝑖𝑖∈𝐽𝐽′

= 𝑑𝑑𝑗𝑗𝑐𝑐𝑗𝑗∀ 𝑚𝑚 ∈ 𝐽𝐽′′, 𝑇𝑇 ∈ 𝐶𝐶,𝑝𝑝 ∈ 𝑃𝑃 7 

���𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑡𝑡 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑟𝑟 �
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐽𝐽′

+ �𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗−1𝑓𝑓
𝑓𝑓∈𝐹𝐹

= �𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓
𝑓𝑓∈𝐹𝐹

+ � �𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼′′

∀𝑅𝑅 ∈ 𝐼𝐼′, 𝑇𝑇 ∈ 𝐶𝐶,𝑝𝑝 ∈ 𝑃𝑃 8 

��𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼′

+ �𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗−1𝑓𝑓
𝑓𝑓∈𝐹𝐹

= �𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓
𝑓𝑓∈𝐹𝐹

+ � ��𝑅𝑅𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑒𝑒
𝑡𝑡 + 𝑅𝑅𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑒𝑒

𝑟𝑟 �
𝑒𝑒∈𝐸𝐸𝑗𝑗∈𝐽𝐽′′

∀𝑇𝑇 ∈ 𝐼𝐼′′, 𝑇𝑇 ∈ 𝐶𝐶,𝑝𝑝 ∈ 𝑃𝑃 9 

��Λ𝑒𝑒𝑐𝑐∑ �𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡 +𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟 �𝑖𝑖∈𝐽𝐽′′
+ ��𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒�

𝑖𝑖∈𝐼𝐼′′
+

𝑐𝑐∈𝐶𝐶

��𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑡𝑡 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑟𝑟 �
𝑖𝑖∈𝐽𝐽′

� ≤ 𝑚𝑚𝑒𝑒(𝑛𝑛𝑖𝑖𝑒𝑒 + �̅�𝑍𝑖𝑖𝑒𝑒)    ∀𝑅𝑅 

∈ 𝐼𝐼,𝑝𝑝 ∈ 𝑃𝑃, 𝑒𝑒 ∈ 𝐸𝐸 

10 

�𝜁𝜁𝑓𝑓𝑐𝑐�𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓 + 𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓�
𝑐𝑐∈𝐶𝐶

≤ 𝑅𝑅𝑓𝑓�𝑇𝑇𝑖𝑖𝑓𝑓 + 𝑌𝑌𝚤𝚤𝑓𝑓����� ∀𝑅𝑅 ∈ 𝐼𝐼,𝑝𝑝 ∈ 𝑃𝑃, 𝑓𝑓 ∈ 𝐹𝐹 11 

𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓 = 0 ∀𝑅𝑅 ∈ 𝐼𝐼′, 𝑇𝑇 ∈ 𝐶𝐶,𝑝𝑝 ∈ {0},𝑓𝑓 ∈ 𝐹𝐹 12 
𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓 = 0 ∀𝑅𝑅 ∈ 𝐼𝐼′′, 𝑇𝑇 ∈ 𝐶𝐶,𝑝𝑝 ∈ {0}, 𝑓𝑓 ∈ 𝐹𝐹 13 

𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑡𝑡 ,𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑟𝑟 ,𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓,𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒 ,𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓 ,𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑡𝑡 ,𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑟𝑟 ,𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗
𝑡𝑡 ,𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗

𝑟𝑟 ,𝑄𝑄𝑖𝑖𝑐𝑐𝑗𝑗 ∈ 𝑅𝑅+ ∀𝑅𝑅 ∈  𝐼𝐼′, 𝑇𝑇 ∈  𝐼𝐼′′, 𝑗𝑗 ∈  𝐽𝐽′,𝑚𝑚
∈  𝐽𝐽′′, 𝑇𝑇 ∈  𝐶𝐶,𝑝𝑝 ∈  𝑃𝑃, 𝑓𝑓 ∈  𝐹𝐹 

14 

 

Function (5) minimizes the total supply chain costs. These costs include shipping cost via truck, rail, and 
barges, inventory cost, and a penalty cost for any unmet demand. Constraints (6) ensure that the 
amount of commodity shipped does not surpass the quantity of supply available.  Constraints (7) 
capture the shortage of commodity in cases when demand exceeds supply. Constraints (8) and (9) are 
the flow balance constraints for origin and destination ports. Constraints (10) ensure that the 
commodity handled at origin and destination ports does not exceed the port capacity. Constraints (11) 
ensure that the total inventory at a port does not exceed the inventor holding capacity of that port. 
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Constraints (12) and (13) assign initial inventory at the destination and origin ports, respectively as zero. 
Constraints (14) are the non-negativity constraints.   

2.2 Solution Approach 
The computational burden from solving the problem formulated in (1) - (14Error! Reference source not 
found.) warrants a use of varied solution approaches. This section discusses Benders Decomposition 
algorithm and techniques to accelerate its convergence rate. 

2.2.1 Benders Decomposition Algorithm 
The uncertainty in commodity demand requires examination of a number of scenarios for a robust 
network design. We approximate the distribution of our stochastic demand via a discrete distribution. 
Let 𝑆𝑆 represent the discrete set of demand realization and let ω𝑠𝑠∀𝑠𝑠 ∈ 𝑆𝑆 represent the corresponding 
probabilities. 

The solution to 2-SOP problem can be computationally expensive based on the size of the problem given 
by |𝐼𝐼|, |𝐽𝐽|, |𝐶𝐶|, |𝑃𝑃| 𝑅𝑅𝑛𝑛𝑑𝑑 |𝑆𝑆|. To overcome this computational burden, Benders decomposition algorithm 
(Benders, 1962), widely used to solve large-size, mixed integer linear problems, is employed. In this 
method, the original problem is decomposed into two subproblems: an integer master problem (MP) 
(15) to (16) and a |𝑆𝑆| linear subproblem (18). The MP along with an auxiliary variable and optimality cut 
provides an approximation of the original problem.  
 
Benders decomposition is an iterative procedure. Let 𝒴𝒴� be the solution of MP (15) to (16). For the given 
𝒴𝒴�, |𝑆𝑆| subproblems are solved, one for each realization 𝑑𝑑𝑠𝑠 of the stochastic demand �̃�𝑑. The solutions to 
the subproblems are used to develop feasibility and optimality cuts that are added to the MP. These 
cuts ensure that, if the current solution 𝒴𝒴� of the MP is not feasible or optimal to the original (𝑊𝑊𝑆𝑆𝑁𝑁) 
problem, this solution is excluded from the feasible region and will not be used in other iterations of 
Benders algorithm. In each iteration of the algorithm, a lower bound and an upper bound are generated. 
The lower bound is given by objective value of (𝑀𝑀 −𝑊𝑊𝑆𝑆𝑁𝑁), and the solution of (𝑀𝑀 −𝑊𝑊𝑆𝑆𝑁𝑁) and 
�𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� provides an upper bound for the original problem (𝑊𝑊𝑆𝑆𝑁𝑁) This is continued until the 
relative gap between the lower and upper bound converge to a given threshold. The following model 
(15) to (16) is the MP.  
 

(𝑀𝑀 −𝑊𝑊𝑆𝑆𝑁𝑁):𝑚𝑚𝑅𝑅𝑛𝑛 � 𝜅𝜅𝑒𝑒
𝑖𝑖∈𝐼𝐼𝑒𝑒∈𝐸𝐸

𝑍𝑍𝑖𝑖𝑒𝑒 + � 𝜄𝜄𝑓𝑓
𝑖𝑖∈𝐼𝐼𝑓𝑓∈𝐹𝐹

𝑌𝑌𝑖𝑖𝑓𝑓 + �𝜔𝜔𝑠𝑠𝜃𝜃𝑠𝑠
𝑠𝑠∈𝑆𝑆

 15 

Subject to: (2-4) 

𝜃𝜃𝑠𝑠𝑛𝑛 ≥���(𝜈𝜈𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠𝑞𝑞𝑖𝑖𝑐𝑐𝑗𝑗 + 𝜉𝜉𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠𝑑𝑑𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠 +
𝑗𝑗∈𝑃𝑃𝑐𝑐∈𝐶𝐶

 
𝑖𝑖∈𝐽𝐽

���𝜋𝜋𝑖𝑖𝑗𝑗𝑒𝑒𝑠𝑠
𝑗𝑗∈𝑃𝑃𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼

𝑚𝑚𝑒𝑒�𝑛𝑛𝑖𝑖𝑒𝑒 + 𝑍𝑍𝑖𝑖𝑓𝑓�

+ ���𝜎𝜎𝑖𝑖𝑗𝑗𝑓𝑓𝑠𝑠
𝑗𝑗∈𝑃𝑃𝑓𝑓∈𝐹𝐹𝑖𝑖∈𝐼𝐼

𝑅𝑅𝑓𝑓�𝑇𝑇𝑖𝑖𝑓𝑓 + 𝑌𝑌𝑖𝑖𝑓𝑓� ∀𝑠𝑠 ∈ 𝑆𝑆,𝑛𝑛 = {1, … ,𝑁𝑁′} 
16 

where 𝑁𝑁′ is the current number of iterations. 

The Benders decomposition solves (𝑀𝑀 −𝑊𝑊𝑆𝑆𝑁𝑁) iteratively and in each iteration 𝑛𝑛, let 𝒴𝒴�𝓃𝓃 represent the 
corresponding solution. Let Φ𝑛𝑛 be the objective function value of model (15) to (16) obtained at the 𝑛𝑛𝑡𝑡ℎ 
iteration. Let ϕ𝑛𝑛, given by equation (17), be the corresponding cost of infrastructure investment. 

ϕ𝑛𝑛 = � κ𝑒𝑒
𝑖𝑖∈𝐼𝐼𝑒𝑒∈𝐸𝐸

𝑍𝑍𝑖𝑖𝑒𝑒𝑛𝑛 + � ι𝑓𝑓
𝑖𝑖∈𝐼𝐼𝑓𝑓∈𝐹𝐹

𝑌𝑌𝑖𝑖𝑓𝑓𝑛𝑛  17 
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Given 𝒴𝒴�𝓃𝓃, following scenario-based subproblem �𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� is solved for each scenario 𝑠𝑠 ∈ 𝑆𝑆. 

�𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� :  𝑚𝑚𝑅𝑅𝑛𝑛�������𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑡𝑡 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟 𝑋𝑋𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑟𝑟 �
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐽𝐽′𝑖𝑖∈𝐼𝐼′

+  �ℎ𝑐𝑐
𝑖𝑖∈𝐼𝐼′

𝑈𝑈𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓𝑠𝑠
𝑗𝑗∈𝑃𝑃𝑐𝑐∈𝐶𝐶

+ � � �𝑅𝑅𝑖𝑖𝑖𝑖
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼′′𝑖𝑖∈𝐼𝐼′

𝑊𝑊𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠 + �ℎ𝑐𝑐
𝑖𝑖∈𝐼𝐼′′

𝑉𝑉𝑖𝑖𝑐𝑐𝑗𝑗𝑓𝑓𝑠𝑠 + � � ��𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡 𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑡𝑡 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑟𝑟 𝑅𝑅𝑖𝑖𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑠𝑠𝑟𝑟 �
𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐽𝐽′′𝑖𝑖∈𝐼𝐼′′

+ � � � �𝑅𝑅𝑖𝑖𝑗𝑗𝑡𝑡 𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠
𝑡𝑡 +�𝑅𝑅𝑖𝑖𝑗𝑗𝑟𝑟 𝑂𝑂𝑖𝑖𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠

𝑟𝑟 �
𝑗𝑗∈𝐽𝐽′′𝑖𝑖∈𝐽𝐽′

+ � 𝜇𝜇
𝑖𝑖∈𝐽𝐽′′

∗ 𝑄𝑄𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠� 

 

18 

Subject to: (6) – (14) 

Constraint (Error! Reference source not found.) is the scenario specific optimality cut added to (𝑀𝑀 −
𝑊𝑊𝑆𝑆𝑁𝑁) in each iteration of the Benders decomposition algorithm. ν𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠∀ 𝑗𝑗 ∈  𝐽𝐽′, ξ𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠 ∀ 𝑗𝑗 ∈
 𝐽𝐽′′, υ𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠, χ𝑖𝑖𝑐𝑐𝑗𝑗𝑠𝑠 ∀ 𝑅𝑅 ∈  𝐼𝐼′′,π𝑖𝑖𝑗𝑗𝑒𝑒𝑠𝑠,σ𝑖𝑖𝑗𝑗𝑓𝑓𝑠𝑠 are dual variables for constraints (6) to (10) respectively. Let 𝒳𝒳𝓃𝓃(𝑠𝑠) 
denote this solution for scenario 𝑠𝑠 at 𝑛𝑛𝑡𝑡ℎ iteration. Constraint (7) makes the scenario-based subproblem 
�𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� always feasible for any values in first-stage decision variables. This constraint makes sure 
that the demand is satisfied either by the supply from counties within the state or via other states. For 
this reason, we do not need to add feasibility cuts to the MP. The dual problem of �𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� is 
shown in Appendix A1. 

Let Θ𝑠𝑠𝑛𝑛 be the objective value of function 𝑠𝑠𝑡𝑡ℎ �𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� for scenario 𝑠𝑠. We calculate Θ𝑛𝑛 as follows 

Θ𝑛𝑛 = �ω𝑠𝑠
𝑠𝑠∈𝑆𝑆

Θ(𝑠𝑠)
𝑛𝑛  

The pseudo-code of the Benders Decomposition algorithm is shown in Algorithm 1. 

Algorithm 1: Benders Decomposition Algorithm 
 Initialize ϵ. Set 𝑛𝑛 ← 1, L𝐵𝐵𝑛𝑛 ← −∞, U𝐵𝐵𝑛𝑛 ← +∞, abort ← 𝑓𝑓alse 
 while 𝑅𝑅𝑏𝑏𝑎𝑎𝑇𝑇𝑡𝑡 =  𝑓𝑓𝑅𝑅𝑅𝑅𝑠𝑠𝑒𝑒 do  
  Solve (𝑀𝑀 −𝑊𝑊𝑆𝑆𝑁𝑁) to obtain Φ𝑛𝑛 ,ϕ𝑛𝑛 and 𝒴𝒴𝓃𝓃 
  if Φ𝑛𝑛 > 𝐿𝐿𝐵𝐵 then 
   𝐿𝐿𝐵𝐵𝑛𝑛 ← Φ𝑛𝑛 
  end 
  For all 𝑠𝑠 ∈ 𝑆𝑆, Solve �𝑆𝑆 −𝑊𝑊𝑆𝑆𝑁𝑁(𝑠𝑠)� to obtain Θ𝑠𝑠𝑛𝑛 and 𝒳𝒳𝓃𝓃(𝑠𝑠) 
  if 𝑈𝑈𝐵𝐵𝑛𝑛 > Θ𝑛𝑛 + ϕ𝑛𝑛 then 
   𝑈𝑈𝐵𝐵𝑛𝑛 ← Θ𝑛𝑛 + ϕ𝑛𝑛 
  end 
  if 𝑈𝑈𝐵𝐵

𝑛𝑛−𝐿𝐿𝐵𝐵𝑛𝑛

𝑈𝑈𝐵𝐵𝑛𝑛
 ≤ ϵ then 

   𝑅𝑅𝑏𝑏𝑎𝑎𝑇𝑇𝑡𝑡 ← 𝑡𝑡𝑇𝑇𝑇𝑇𝑒𝑒 
  else 
   Add cut (Error! Reference source not found.) to (𝑀𝑀 −𝑊𝑊𝑆𝑆𝑁𝑁) 
   𝑛𝑛 ← 𝑛𝑛 + 1 
  end 
 end 
  return 𝑈𝑈𝐵𝐵, 𝒴𝒴𝓃𝓃 and 𝒳𝒳𝓃𝓃(𝑠𝑠) 
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2.2.2 Methods to Accelerate Benders Decomposition Algorithm 
The Benders Decomposition algorithm is known to be extremely slow and computationally expensive. 
Côté and Laughton (1984), Magnanti and Wong (1981), McDaniel and Devine (1977), Poojari and 
Beasley (2009), Rei et al. (2009), and Saharidis et al. (2010) have developed and successfully 
implemented acceleration techniques to improve the convergence rate of Benders Decomposition. In 
our study we add Knapsack inequalities and Pareto-optimal cuts to enhance the convergence rate of the 
algorithm. The details of the proposed techniques are provided in later parts of this section. 
 
Knapsack inequalities: 
Adding knapsack inequalities can improve the convergence rate of the algorithm by reducing the 
solution space of (𝑀𝑀 −𝑊𝑊𝑊𝑊𝑊𝑊), thus, reducing the time it takes to solve the  problem (Santoso et al., 
2005). In addition, state-of-the-art solvers, such as GUROBI and CPLEX, can extract valid inequalities 
from knapsack inequalities. Let 𝐿𝐿𝐵𝐵𝑛𝑛 denote the lower bound obtained in 𝑛𝑛𝑡𝑡ℎ iteration of the algorithm. 
Hence, following knapsack inequalities are added to (𝑀𝑀 −𝑊𝑊𝑊𝑊𝑊𝑊) in the (𝑛𝑛 + 1)𝑡𝑡ℎ iteration to accelerate 
the convergence rate of Benders algorithm: 

𝐿𝐿𝐵𝐵𝑛𝑛 ≤ � κ𝑒𝑒
𝑖𝑖∈𝐼𝐼𝑒𝑒∈𝐸𝐸

𝑍𝑍𝑖𝑖𝑒𝑒 + � ι𝑓𝑓
𝑖𝑖∈𝐼𝐼,𝑓𝑓∈𝐹𝐹

𝑌𝑌𝑖𝑖𝑓𝑓 + �ω𝑠𝑠
𝑠𝑠∈𝑆𝑆

θ𝑠𝑠 19 

 
Pareto-optimal cuts: 
The subproblems �𝑊𝑊 −𝑊𝑊𝑊𝑊𝑊𝑊(𝑠𝑠)� are capacitated transportation problems. The transportation problem 
is degenerate in nature (Ahuja et al., 1988), that is, it has multiple optimal solutions and each solution 
generates optimality cuts of different strength.  Hence, the solution of the subproblem should be chosen 
in such a way that it produces the strongest cuts. Magnanti & Wong (1981) found that adding Pareto-
optimal cuts to the MP improves the convergence rate of the Benders Decomposition algorithm. The 
generation of Pareto-optimal cuts proposed by (Magnanti & Wong, 1981) requires solving two 
subproblems, one associated with solution of the MP and another associated with core points. A point 
𝑦𝑦 ∈ 𝑟𝑟𝑟𝑟(𝑌𝑌𝑐𝑐) is a core point of 𝑌𝑌, where 𝑟𝑟𝑟𝑟(𝑊𝑊) and 𝑊𝑊𝑐𝑐 are the relative interior and convex hull of set 𝑊𝑊 ⊆ 
𝑅𝑅𝑘𝑘 respectively (Papadakos, 2008). Let, 𝒴𝒴�𝓃𝓃 be the solution of the MP at 𝑛𝑛𝑡𝑡ℎ iteration and 𝒴𝒴�ℴ ={ 𝑍𝑍𝑖𝑖𝑒𝑒

𝑜𝑜,𝑛𝑛 =
0, 𝑌𝑌𝑖𝑖𝑓𝑓

𝑜𝑜,𝑛𝑛 = 0|𝑛𝑛 = 1, 𝑟𝑟 ∈ 𝐼𝐼, 𝑒𝑒 ∈ 𝐸𝐸, 𝑓𝑓 ∈ 𝐹𝐹} be the set of initial core points. The subproblem to generate 
Pareto-optimal cuts is given as: 

�𝑀𝑀𝑊𝑊𝑊𝑊 −𝑊𝑊𝑊𝑊𝑊𝑊(𝑠𝑠)�:𝑚𝑚𝑚𝑚𝑚𝑚�����𝜈𝜈𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠𝑞𝑞𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠 + 𝜉𝜉𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠𝑑𝑑𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠�
𝑠𝑠∈𝑆𝑆𝑗𝑗∈𝑃𝑃𝑐𝑐∈𝐶𝐶𝑗𝑗∈𝐽𝐽

+ ����𝜋𝜋𝑖𝑖𝑗𝑗𝑒𝑒𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑗𝑗∈𝑃𝑃𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼

𝑚𝑚𝑒𝑒(𝑛𝑛𝑖𝑖𝑒𝑒 + 𝑍𝑍𝑖𝑖𝑒𝑒𝑜𝑜 ) + ����𝜎𝜎𝑖𝑖𝑗𝑗𝑓𝑓𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑗𝑗∈𝑃𝑃𝑓𝑓∈𝐹𝐹𝑖𝑖∈𝐼𝐼

𝑙𝑙𝑓𝑓�𝑘𝑘𝑖𝑖𝑓𝑓 + 𝑌𝑌𝑖𝑖𝑓𝑓𝑜𝑜� 
20 

subject to: (24) - (38)  

����𝜈𝜈𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠𝑞𝑞𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠 + 𝜉𝜉𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠𝑑𝑑𝑗𝑗𝑐𝑐𝑗𝑗𝑠𝑠�
𝑗𝑗∈𝑃𝑃𝑐𝑐∈𝐶𝐶𝑗𝑗∈𝐽𝐽

+ ���𝜋𝜋𝑖𝑖𝑗𝑗𝑒𝑒𝑠𝑠
𝑗𝑗∈𝑃𝑃𝑒𝑒∈𝐸𝐸𝑖𝑖∈𝐼𝐼

𝑚𝑚𝑒𝑒(𝑛𝑛𝑖𝑖𝑒𝑒 + 𝑍𝑍𝑖𝑖𝑒𝑒𝑛𝑛 )

+ ���𝜎𝜎𝑖𝑖𝑗𝑗𝑓𝑓𝑠𝑠
𝑗𝑗∈𝑃𝑃𝑓𝑓∈𝐹𝐹𝑖𝑖∈𝐼𝐼

𝑙𝑙𝑓𝑓�𝑘𝑘𝑖𝑖𝑓𝑓 + 𝑌𝑌𝑖𝑖𝑓𝑓𝑛𝑛� = Θ𝑛𝑛(𝑠𝑠) ∀𝑠𝑠 ∈ 𝑊𝑊 
21 

Since this technique relies on the solution of the subproblems, Papadakos (2008) proposed a 
methodology to generate sub problem independent Pareto-optimal cuts. Papadakos (2008)showed that 
by using different core points at each iteration, constraint (21) could be disregarded. Pareto-optimal 
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cuts generated by this approach are commonly known as modified 𝑀𝑀𝑚𝑚𝑀𝑀𝑛𝑛𝑚𝑚𝑛𝑛𝑀𝑀𝑟𝑟 −𝑊𝑊𝑊𝑊𝑛𝑛𝑀𝑀 𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑀𝑀𝑊𝑊 −
𝑊𝑊𝑝𝑝𝑀𝑀𝑟𝑟𝑚𝑚𝑚𝑚𝑙𝑙 𝑐𝑐𝑐𝑐𝑀𝑀𝑠𝑠. The core points are updated in every iteration as follows: 

𝑍𝑍𝑖𝑖𝑒𝑒
𝑜𝑜,𝑛𝑛+1 = (1 − 𝜆𝜆)𝑍𝑍𝑖𝑖𝑒𝑒

𝑜𝑜,𝑛𝑛 + 𝜆𝜆𝑍𝑍𝑖𝑖𝑒𝑒𝑛𝑛  22 
𝑌𝑌𝑖𝑖𝑓𝑓
𝑜𝑜,𝑛𝑛+1 =  (1 − 𝜆𝜆)𝑌𝑌𝑖𝑖𝑓𝑓

𝑜𝑜,𝑛𝑛 + 𝜆𝜆𝑌𝑌𝑖𝑖𝑓𝑓𝑛𝑛  23 
Papadakos (2008) and Mercier et al. (2005) empirically showed that the value of 𝜆𝜆 = 0.5 gives the best 
result. Pseudo code of the accelerated Benders Decomposition with Pareto-optimal cuts is provided in 
Algorithm 2. 

Algorithm 2: Benders Decomposition Algorithm with Knapsack Inequalities and Pareto-optimal Cuts 
 Initialize ϵ, 𝑍𝑍𝑖𝑖𝑒𝑒

𝑜𝑜,𝑛𝑛,𝑌𝑌𝑖𝑖𝑓𝑓
𝑜𝑜,𝑛𝑛 . Set 𝑛𝑛 ← 1, L𝐵𝐵𝑛𝑛 ← −∞, U𝐵𝐵𝑛𝑛 ← +∞, abort ← 𝑓𝑓alse 

 while 𝑚𝑚𝑎𝑎𝑊𝑊𝑟𝑟𝑀𝑀 =  𝑓𝑓𝑚𝑚𝑙𝑙𝑠𝑠𝑒𝑒 do  
  For all 𝑠𝑠 ∈  𝑊𝑊, Solve �𝑀𝑀𝑊𝑊𝑊𝑊 −𝑊𝑊𝑊𝑊𝑊𝑊(𝑠𝑠)� to obtain Θ𝑠𝑠𝑛𝑛 and 𝒴𝒴𝓃𝓃(𝑠𝑠) 
  Add cuts (Error! Reference source not found.) to (𝑀𝑀 −𝑊𝑊𝑊𝑊𝑊𝑊) 
  Solve (𝑀𝑀 −𝑊𝑊𝑊𝑊𝑊𝑊) to obtain Φ𝑛𝑛 ,ϕ𝑛𝑛 and 𝒴𝒴𝓃𝓃 
  if Φ𝑛𝑛 > 𝐿𝐿𝐵𝐵 then 
   𝐿𝐿𝐵𝐵𝑛𝑛 ← Φ𝑛𝑛 
  end 
  For all 𝑠𝑠 ∈ 𝑊𝑊, Solve �𝑊𝑊 −𝑊𝑊𝑊𝑊𝑊𝑊(𝑠𝑠)� to obtain Θ𝑠𝑠𝑛𝑛 and 𝒳𝒳𝓃𝓃(𝑠𝑠) 
  if 𝑈𝑈𝐵𝐵𝑛𝑛 > Θ𝑛𝑛 + ϕ𝑛𝑛 then 
   𝑈𝑈𝐵𝐵𝑛𝑛 ← Θ𝑛𝑛 + ϕ𝑛𝑛 
  end 
  if 𝑈𝑈𝐵𝐵

𝑛𝑛−𝐿𝐿𝐵𝐵𝑛𝑛

𝑈𝑈𝐵𝐵𝑛𝑛
 ≤ ϵ then 

   𝑚𝑚𝑎𝑎𝑊𝑊𝑟𝑟𝑀𝑀 ← 𝑀𝑀𝑟𝑟𝑐𝑐𝑒𝑒 
  else 
   Add cuts (Error! Reference source not found.) to (𝑀𝑀 −𝑊𝑊𝑊𝑊𝑊𝑊) 
   Add Knapsack inequalities (19) to (𝑀𝑀 −𝑊𝑊𝑊𝑊𝑊𝑊) 
   Update core points using equations (22) and (23) 
   𝑛𝑛 ← 𝑛𝑛 + 1 
  end 
 end 
  return 𝑈𝑈𝐵𝐵, 𝒴𝒴𝓃𝓃 and 𝒳𝒳𝓃𝓃(𝑠𝑠) 
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3 Computational Study and Managerial Insights 
This section discusses the solution quality of the proposed algorithm, a case study application of the 
model to the Arkansas Section of the MKARNS, and performance evaluation of stochastic solutions. 

3.1 Performance Evaluation 
We solved a variety of problems to determine the quality of the proposed algorithms (Table 2) and 
compare various solution approaches: (1) Gurobi solver, (2) Benders algorithm, (3) Benders with 
Knapsack inequalities, (4) Benders with Knapsack inequalities and Pareto-optimal cuts. We use the 
following stopping criteria to terminate the algorithm: (𝑟𝑟) optimality gap ≤ 1%, (𝑟𝑟𝑟𝑟) number of 
iterations ≥ 500 and (𝑟𝑟𝑟𝑟𝑟𝑟) algorithm run time ≥ 12,600 seconds. The experiments are carried out on a 
Windows 10 PC with an Intel Core i7 3.2 GHz processor and 32 GB of RAM. Results of the experiments 
are summarized by the algorithm run time in seconds 𝑀𝑀(𝑠𝑠), the optimality gap 𝜖𝜖(%), and the number of 
iterations (n) at the time with the stop criteria is met (Table 3). 

Table 2 Test Case Size 

Problem Nr. 

|𝐼𝐼| |𝐽𝐽| |𝐶𝐶| |𝑃𝑃| |𝑊𝑊| 

Problem Nr. 

|𝐼𝐼| |𝐽𝐽| |𝐶𝐶| |𝑃𝑃| |𝑊𝑊| 
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1 15 45 5 6 4 9 30 75 11 9 12 
2 15 45 5 6 8 10 30 75 11 9 16 
3 15 45 5 6 10 11 30 75 11 12 4 
4 15 45 5 6 12 12 30 75 11 12 8 
5 15 45 5 6 16 13 30 75 11 12 10 
6 30 75 11 9 4 14 30 75 11 12 12 
7 30 75 11 9 8 15 30 75 11 12 16 
8 30 75 11 9 10       

Overall, Gurobi outperforms the alternative solution approaches in terms of run time, optimality gap, 
and number of iterations in all experiments except for the cases (8)-(10) and (12)-(15). This warrants the 
implementation of Benders decomposition algorithm. Although standard Benders decomposition does 
not have memory issues, it fails to converge to solutions with smaller than 1% optimality gap within the 
given time limit for medium and large sized problems (problems (6) - (15), Table 3). This finding justifies 
the use of an acceleration techniques to improve the convergence rate of the algorithm. With the 
addition of Knapsack inequalities, improvement in terms of solution time, optimality gap and number of 
iterations is observed for majority of the cases. However, like the standard Benders decomposition, it is 
not successful in finding solutions with smaller than 1% optimality gap within 12,600 seconds (3.5 
hours). We observe a significant improvement in terms of solution quality and run time when we add 
both Knapsack inequalities and Pareto-optimal cuts to the MP. Benders decomposition algorithm with 
Knapsack inequalities and Pareto-optimal cuts provides solutions of high quality within the proposed 
threshold run time. 
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Table 3 Comparison of solution approaches 

Case 
Gurboi  Benders  Benders + KI  Benders + KI + PO 

𝑀𝑀(𝑠𝑠)  𝜖𝜖(%)  𝑀𝑀(𝑠𝑠)  𝜖𝜖(%) 𝑛𝑛  𝑀𝑀(𝑠𝑠)  𝜖𝜖(%) 𝑛𝑛  𝑀𝑀(𝑠𝑠)  𝜖𝜖(%) 𝑛𝑛 
1 5 0.9  40 0.51 21  38 0.45 19  26 0.95 7 
2 20 0.07  160 0.99 38  135 0.98 31  119 0.28 15 
3 25 0.16  378 0.99 64  349 1 55  131 0.85 13 
4 36 0.22  185 0.97 29  151 0.98 24  144 0.92 12 
5 52 0.09  161 0.98 20  161 0.97 20  157 0.99 10 
6 955 0.51  12,600 5.09 179  12,600 4.78 135  2,960 0.81 30 
7 4,063 0.46  12,600 4.96 118  12,600 4.51 99  5,784 0.88 30 
8 - -  12,600 4.52 95  12,600 4.41 88  5,442 0.96 23 
9 - -  12,600 3.24 87  12,600 2.76 80  6,702 0.48 24 

10 - -  12,600 2.15 66  12,600 2.02 63  7,421 0.89 20 
11 1,732 0.77  12,600 5.48 157  12,600 5.2 135  5,232 0.8 36 
12 - -  12,600 5.33 88  12,600 5.1 83  8,820 0.98 31 

13* - -  12,600 5.41 72  12,600 4.94 67  10,245 0.94 29 
14 - -  12,600 3.77 61  12,600 3.42 58  10,407 0.85 25 
15 - -  12,600 2.70 46  12,600 2.70 46  12,586 0.69 23 

* indicates a representative case size for a real-world problem 

3.2 Case Study: McClellan-Kerr Arkansas River Navigation System 
The 2-SOP problem is applied to the Arkansas section of the MKARNS. This 308-mile inland waterway 
system has 13 locks and 43 freight ports.  

3.2.1 Data Description 
3.2.1.1 Commodity demand and supply data 
The US Army Corps of Engineers (USACE) produces the Lock Performance Management System (LPMS) 
report which records monthly commodity volume (in tons) passing through each lock. The LPMS 
classifies commodities into nine groups and several subgroups. Data is available for the years 2009 
through 2016. This source was used for creating demand scenarios in the 2-SOP model. 

The Arkansas Statewide Travel Demand Model (Alliance Transportation Group and Cambridge 
Systematics, 2012) maintained by ARDOT reports amounts (in tons) of commodities  shipped between 
counties. The total amount of commodity shipped from a county is considered to be the supply for the 
(shipment) origin county. Similarly, the total amount of commodities received by a county is considered 
to be the demand for that (shipment) destination county. The commodity grouping in the Statewide 
Travel Demand Model and LMPS differed.  We reorganized commodities into 11 groups that align with 
the subgroups reported by LMPS. 

3.2.1.2 Transportation cost data 
The transportation cost (in $/ton-mile) for truck and rail are derived from the ARDOT Travel Demand 
Model (Alliance Transportation Group and Cambridge Systematics, 2012), Bureau of Transportation 
Statistics (2010) and Surface Transportation Board (2003). The barge transportation cost (in $/ton-mile) 
is derived from the data reported by (United States Department of Agriculture, 2001) for major cities 
along waterways. However, the data is not reported for cities along the Arkansas River. Thus, rates from 
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the surrounding region in St. Louis and Cairo-Memphis were averaged to estimate the costs for the 
Arkansas river. Transportation cost data used in our study are shown in Table 5 in Appendix A2. 

3.2.1.3 Port capacity data 
The National Transportation Atlas Database (NTAD), published by the United States Department of 
Transportation BTS (2021)  contains information about the location, commodity handling equipment, 
storage facility, and road/railway connection of terminals at US coastal, Great Lakes, and inland ports. 
Data about the number of equipment units and storage facilities are gathered from this dataset. This 
data is supplemented and updated using information obtained from ports' websites and satellite 
images. The data for port processing and storage capacity used in our study are shown in Table 8 and 
Table 9, respectively, in Appendix A2. 

3.2.1.4 Infrastructure cost 
Costs for equipment (i.e., crane, conveyor, hooper, forklift) and storage facilities (i.e., warehouse, 
storage tank, paved and unpaved storage) are obtained from Braham et al. (2017). These costs include 
labor and materials as well as general overhead. Braham et al. (2017) selected these costs from a 
material, construction and equipment cost database from (RS Means, 2014) and (RS Means, 2017), and 
validated through interviews with industry representatives.  All costs for our study are calculated based 
on the 2020-dollar value. The infrastructure cost used in our study are shown in Table 6 and Table 7 in 
Appendix A2. 

3.2.1.5 Scenario definitions 
To capture the impacts of stochasticity in commodity demand to infrastructure decisions, we generate 
10 different demand scenarios. Scenarios 1 to 8 are based on historical commodity throughput data 
gathered from the LPMS between 2009 and 2016. We assign a probability of 6.5% to the scenario 
developed using historical data from 2009 and increase this probability by 0.5% per year for subsequent 
years. This is done with the assumption that the demand scenarios developed from recent years have 
more probability of occurrence compared to scenarios developed from previous years. The probability 
of scenarios developed from historical data sum to 66%. Two additional scenarios: scenario 9 with 
probability of 20% and scenario 10 with probability of 14%, are developed based on the 15 and 25 year 
commodity demand projection from BTS (2019), respectively. 

3.2.2 Case Study Results 
We evaluate the impacts of varying investment for infrastructure investments on system cost and 
volume of commodities moved via waterways. The total system cost, which includes transportation cost 
and investment cost, decreases from $1.245 billion to $1.225 billion ($20 million decrease) as the 
investment increases from $2 to $6 million ($4 million increase) (Figure 4). The rate of decrease in total 
system cost reduces after the investment reaches $6 million. The total system cost drops to $1.216 
billion at an investment of $10 million.  We see similar results for unit supply chain cost where the unit 
cost decreases from $21.15/ton to $20.74/ton ($0.41/ton decrease) as the investment increases from $2 
million to $6 million ($4 million decrease) and eventually to $20.55/ton for an investment of $10 million 
(Figure 5). This decrease in unit cost can be attributed to the increased volume of commodity shipped 
via waterways which have the lowest transportation cost compared to truck and rail, as shown in Figure 
7. 

We discuss the frequency and the range of investments at individual ports for five different investment 
scenarios, $2M, $4M, $6M, $8M, and $10M (Figure 6). In most of these scenarios, the model 
determines that investments should be made on ports located near Little Rock (central Arkansas), 
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Delaware (mid-western section of the Arkansas river) and Fort Smith (western most port on the 
Arkansas river). In every scenario considered, the model determines that investments in capacity 
expansion equipment should be made at the port located near Little Rock (Port 15 in Figure 6). Across all 
scenarios, several ports repeatedly receive no investment e.g., Menifee, Morrilton, and Russellville. 

 
Figure 4 Total System Cost 

 
Figure 5 Unit Supply Chain Cost 

 

 
Figure 6 Port Investment 

The volume of commodity shipped via waterways increases as the investment in port capacity increases 
(Figure 7). A total of 2.74 million tons of commodity is shipped via waterways (6% of total shipments by 
all three modes) when the total investment is $2 million. This volume increases to 3.47 million (8% of 
total shipments by all three modes) when the amount invested in infrastructure is $10 million. We also 
report the change in ton-miles shipped by waterways for varying investment (Figure 8). Ton-mile reflects 
both the volume (tons) and distance (miles) shipped and is one of the most well used measures of the 
physical volume of freight transportation services (United States Department of Transportation BTS, 
2012). The waterway serves nearly 188 million ton-miles of freight (5% of all three modes) at an 
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investment of $2 million and increases to 231 million ton-miles (6% of all three modes) at an investment 
of $10 million. 

 
Figure 7 Total Volume 

 
Figure 8 Total Ton-miles 

 
Figure 9 Commodity Volume 

 
Figure 10 Commodity Ton-miles 

The 2-SOP model represents 11 commodity groups and models the shipment, supply, and demand for 
each commodity group uniquely while considering how port infrastructure can be shared among 
commodity groups, e.g., a grain elevator can be used for aggregates and gain. To demonstrate this 
modeling contribution, we present the results for four commodity groups that dominate the Arkansas 
section of the MKARNS (Asborno et al., 2020): nonmetallic minerals, agriculture and food, 
manufacturing, and chemicals. The volume of nonmetallic minerals shipped via waterways increases 
from 1.5 million (56% of all commodities) to 2.2 million tons (64% of all commodities) (an increase of 0.8 
million tons) as the investment increases from $2 million to $10 million (Figure 9). This represents a 
reduction of 1.4% of non-metallic minerals shipped via truck and rail. Similarly, the nonmetallic mineral 
freight generated via waterways increases from 121 million ton-miles (64% of all commodities) to 167 
million ton-miles (72% of all commodities) (an increase of 45 million ton-miles) when investments 
increase from $2 million to $10 million (Figure 10). No significant impact of port infrastructure 
investment is seen for the other three commodity groups. 

3.3 Evaluation of Stochastic Solutions 
To demonstrate the benefit of developing the model with stochastic elements, as opposed to a 
deterministic model, we calculate the Value of Stochastic Solution (VSS). VSS is the difference between 
the objective function value of the stochastic solution and the expected value solution. We also 
calculate the Expected Value of Perfect Information (EVPI) which captures the value of knowing the 
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future with certainty. EVPI is the difference between the objective function value of the stochastic 
solution and the wait-and-see solutions (WSS). 

Table 4 Comparison of Stochastic and Deterministic Solutions 
Strategies Value ($M) 
Stochastic programming 1,225 
Wait and see solutions  
Scenario-1 1,433 
Scenario-2 626 
Scenario-3 680 
Scenario-4 538 
Scenario-5 1,367 
Scenario-6 2,336 
Scenario-7 976 
Scenario-8 286 
Scenario-9 1,455 
Scenario-10 1,798 
Expected value solution 1,246 

 

The expected value solution is calculated in two steps. First, we solve (WSN) assuming a single scenario, 
represented by the expected values of commodity demand. Next, we fix the values of the first stage 
decisions using this solution, and resolve (WSN) to obtain the expected value solution of $1,246M.  
Hence, VSS = $1,246M - $1,225M = $21M. Therefore, the expected savings from solving the stochastic 
model, rather than the corresponding deterministic model, is $21M per year. 

The following is the approach we use to calculate EVPI. Let us assume that we know exactly what 
scenario is realized in the future. Then, we can solve (WSN) for this particular scenario. This is the “wait-
and-see solution" (WSS). Table 4 summarizes the WSS of each scenario. We calculate the expected value 
of WSS to be $1,221M ($1,433M*0.065 + $626M*0.07 + $680M*0.075 + $538M*0.08 + $1,367M*0.085 
+ $2,336M*0.09 + $976M*0.095 + $286M*0.1 + $1,455M*0.20 + $1,798M*0.14). Recall the multipliers 
in the above calculation correspond to the likelihood of each scenario occurring. Therefore, EVPI is $4M 
($1,225M - $1,221M). Hence, the price we should be willing to pay for correctly predicting future 
realizations of commodity demand, should be no more than $4M. 
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4 Conclusion 
In this research, we develop a model to guide strategic investments in inland waterway port 
infrastructure investments given uncertainty in commodity demand. This study proposes 2-SOP model 
that seeks to minimize the total of port infrastructure investment costs and the expected transportation 
costs. We implement a Benders decomposition algorithm to solve the model and accelerate this 
algorithm using Knapsack inequalities and Pareto-optimal cuts. The computational analysis reveals that 
Benders with Knapsack inequalities and Pareto-optimal cuts outperforms Gurobi and the traditional 
Benders algorithm for large-sized problems. 

We apply the two-stage stochastic optimization model to the Arkansas section of the McCllelan-Kerr 
Arkansas River Navigation System (MKARNS). The model results show that while the total system cost 
(transportation plus investment costs) decreases with increasing investment, the rate of decrease in 
system cost is convex in nature, i.e., the rate of change decreases with the dollar amount invested in 
port capacity expansion. Our model shows that commodity volume and, as expected, the percent of that 
volume that moves via waterways (in ton-miles) increases with increasing investment in port 
infrastructure. The model captures individual commodity movements in terms of tons and ton-miles 
shipped by transportation mode.  Results show that among all commodities, nonmetallic minerals 
experience the largest fluctuation in the tonnage and ton-miles shipped as a consequence of changing 
investment amounts. Furthermore, since the model estimates investments and commodity throughput 
at individual ports, we can identify a cluster of ports (Little Rock, Fort Smith) that should receive 
investment in port capacity under any investment scenario. 

Finally, to demonstrate the value of a stochastic formulation over a deterministic approach, we calculate 
the value of the stochastic solution, VSS. VSS shows that a failure to use stochastic model to capture 
variations in commodity demand, could cost up to $21 M per year. We also calculate the expected value 
of perfect information (EVPI). EVPI indicates the price we should be willing to pay for correctly predicting 
future realizations of commodity demand, should be no more than $4M. 



24 
 

5 Future Work 
This research opens several research avenues to explore in future. The current model allows for analysis 
of the supply chain within a state with assumptions about out of state (external) commodity demand. In 
the future, the model will be expanded to incorporate multiple states to form a “freight region’ by 
adding railway and highway networks connecting neighboring states.  

Furthermore, in our current study, there are no port disruption scenarios considered. Closure of a port 
due to human-induced and/or natural causes can impact port operation. This leads to temporary 
decrease in port capacity. The event and impact of port disruption is uncertain and therefore, future 
study will incorporate this uncertainty of port disruption for modeling port infrastructure planning.  

While our current work used knapsack inequalities and Pareto-optimal cuts to accelerate the Benders 
decomposition algorithm, our future work will explore additional enhancement techniques such as 
maximum density cut generation and Benders-type heuristics.  
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A1. Appendix A Dual Problem 
�𝐷𝐷𝐷𝐷 −𝑊𝑊𝐷𝐷𝑊𝑊(𝑠𝑠)�:𝑚𝑚𝑚𝑚𝑚𝑚��� �(𝜈𝜈_𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠 𝑞𝑞_𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠 + 𝜉𝜉_𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑗𝑗_𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠

𝑠𝑠 ∈𝑆𝑆𝑝𝑝 ∈𝑃𝑃𝑐𝑐∈𝐶𝐶𝑗𝑗∈𝐽𝐽

)

+ ����𝜋𝜋𝑖𝑖𝑝𝑝𝑖𝑖𝑠𝑠𝑚𝑚𝑖𝑖(𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑍𝑍𝑖𝑖𝑖𝑖) +
𝑠𝑠∈𝑆𝑆𝑝𝑝∈𝑃𝑃𝑖𝑖∈𝐸𝐸𝑖𝑖∈𝐼𝐼

����𝜎𝜎𝑖𝑖𝑝𝑝𝑖𝑖𝑠𝑠𝑙𝑙𝑖𝑖(𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖)
𝑠𝑠∈𝑆𝑆𝑝𝑝∈𝑃𝑃𝑖𝑖∈𝐹𝐹𝑖𝑖∈𝐼𝐼
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subject to: 
𝜈𝜈𝑗𝑗𝑐𝑐𝑝𝑝𝑠𝑠 + 𝜐𝜐𝑖𝑖𝑐𝑐𝑝𝑝𝑠𝑠 + Λ𝑖𝑖𝑐𝑐𝜋𝜋𝑖𝑖𝑝𝑝𝑖𝑖𝑠𝑠 ≤ 𝛼𝛼𝑖𝑖𝑗𝑗𝑡𝑡 ,∀𝑖𝑖 ∈ 𝐼𝐼′, 𝑗𝑗 ∈ 𝐽𝐽′, 𝑗𝑗 ∈ 𝐶𝐶, 𝑒𝑒 ∈ 𝐸𝐸, 𝑗𝑗 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝐷𝐷,𝛽𝛽𝑖𝑖𝑐𝑐 =  1 25 

𝜈𝜈𝑗𝑗𝑐𝑐𝑝𝑝𝑠𝑠 + 𝜐𝜐𝑖𝑖𝑐𝑐𝑝𝑝𝑠𝑠 + Λ𝑖𝑖𝑐𝑐  𝜋𝜋𝑖𝑖𝑝𝑝𝑖𝑖𝑠𝑠 ≤ 𝛼𝛼𝑖𝑖𝑗𝑗𝑟𝑟 ,∀𝑖𝑖 ∈ 𝐼𝐼′, 𝑗𝑗 ∈ 𝐽𝐽′, 𝑗𝑗 ∈ 𝐶𝐶, 𝑒𝑒 ∈ 𝐸𝐸, 𝑗𝑗 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝐷𝐷,𝛽𝛽𝑖𝑖𝑐𝑐 = 1, 𝛾𝛾𝑗𝑗 = 1, 𝛿𝛿𝑖𝑖 = 1 26 
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A2. Data 

Table 5 Transportation Cost for Truck, Rail and Barge 
Transportation Mode Parameters Value 

Truck 𝛼𝛼𝑖𝑖𝑗𝑗𝑡𝑡  , 𝑙𝑙𝑗𝑗𝑗𝑗𝑡𝑡  $0.185/ton-mile 
Rail 𝛼𝛼𝑖𝑖𝑗𝑗𝑟𝑟  , 𝑙𝑙𝑗𝑗𝑗𝑗𝑟𝑟  $22.65/ton+$0.033/ton-mile 

Barge 𝑚𝑚𝑖𝑖𝑘𝑘𝑟𝑟  $0.0089/ton-mile 
 

Table 6 Equipment Cost 
Equipment Cost ($) Specification 
Conveyor 18,723 36 inch 
Crane 300,000 65 ton 
Hopper 18,723 25 ton 
Forklift 96,738   

 

Table 7 Storage Facility Cost 
Storage facility Cost ($) Specification 
Grain elevator 227,866 650000 bushels 

Unpaved storage 692,769 547000 𝑓𝑓𝑡𝑡2 
Paved storage 307,065 144000 𝑓𝑓𝑡𝑡2 

Warehouse 5,663,854 77000 𝑓𝑓𝑡𝑡2 
Chemical/Petroleum storage tank 1,109,090 125000 barrels 

 

 

Table 8 Equipment Processing Capacity (ton/month) 
Port Crane, Conveyor, Hopper, Forklift Crane, Forklift Petroleum tank Chemical tank 

1 32,400 0 0 7,624 
2 34,425 0 0 0 
3 30,375 0 0 0 
4 30,000 0 0 0 
5 0 150,000 0 7,624 
6 0 0 0 0 
7 30,000 0 0 0 
8 50,250 9,300 0 0 
9 30,000 0 0 0 

10 0 210,000 0 0 
11 30,000 0 0 0 
12 30,375 0 0 0 
13 38,700 200,700 0 0 
14 0 0 38,120 0 
15 129,300 21,600 7,624 0 



31 
 

Table 8 Equipment Processing Capacity (ton/month) 
Port Crane, Conveyor, Hopper, Forklift Crane, Forklift Petroleum tank Chemical tank 
16 0 0 0 22,872 
17 105,000 0 0 0 
18 0 58,500 0 0 
19 26,250 0 0 0 
20 52,500 0 0 0 
21 30,000 0 0 0 
22 26,250 0 0 0 
23 4,050 0 0 0 
24 52,500 0 0 0 
25 15,000 0 0 0 
26 0 90,000 0 0 
27 76,650 30,000 0 0 
28 20,250 0 0 0 
29 34,425 0 0 0 
30 105,000 0 0 0 

 

 
Table 9 Storage Facility Capacity (ton) 

Port Grain 
elevator 

Unpaved 
storage Paved storage Warehouse Chemical 

storage tank 
Petroleum 

storage tank 
1 118,800 18,687 0 4,182 0 3,600 
2 15,984 0 0 0 0 0 
3 61,992 0 0 0 0 0 
4 11,556 0 0 0 0 0 
5 0 0 0 15,410 0 0 
6 0 0 0 0 0 26,250 
7 11,214 0 0 0 0 0 
8 324 0 0 48,956 0 0 
9 0 176,380 0 0 0 0 

10 0 115,352 0 3,679 0 0 
11 0 0 0 4,594 0 0 
12 113,400 0 0 0 0 0 
13 0 143,749 191,602 5,906 0 0 
14 0 0 0 0 29,700 0 
15 56,700 0 5,748,048 10,731 7,950 0 
16 0 0 0 0 0 27,300 
17 0 261,766 0 0 0 0 
18 0 9,793 45,646 0 0 0 
19 0 48,243 0 0 0 0 
20 0 50,614 188,185 0 0 0 
21 13,500 0 0 1,254 0 0 
22 0 0 316,559 0 0 0 
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Table 9 Storage Facility Capacity (ton) 

Port Grain 
elevator 

Unpaved 
storage Paved storage Warehouse Chemical 

storage tank 
Petroleum 

storage tank 
23 17,550 0 0 10,073 0 0 
24 0 1,069,815 0 0 0 0 
25 0 0 1,322,985 4,534 0 0 
26 0 0 0 10,047 0 0 
27 0 0 492,369 13,922 0 0 
28 22,950 0 0 0 0 0 
29 0 125,172 0 0 0 0 
30 0 0 0 25,988 0 0 
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