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Abstract 

The inland waterway freight system is a valuable and underutilized asset within the United States 

(U.S.) transportation system, providing an economical and environmentally sound mode for 

moving cargo. Container on Barge (COB) transportation is an intermodal freight transport mode 

that moves shipping containers via barges on navigable inland and intracoastal waterways. During 

the past twenty years, COB has been a growing mode of container shipping globally due to its low-

cost, eco-friendly, and congestion-reducing characteristics. Europe and China are currently in 

leading positions in global COB transportation, and the U.S. may have the potential to achieve 

economic benefits through the implementation of COB within its intermodal transportation 

system. In this project, three contributions are made: 1) a literature review to systematically 

describe the development and status of COB transportation research, 2) a Value-Focused 

Thinking-based decision model to assess the feasibility of implementing COB at inland waterway 

ports within the United States, and 3) a machine learning study to perform container volume 

forecasting for COB transportation within the United States. This research assists maritime 

transportation decision-makers and individual inland waterway port/terminal operators to: 1) adopt 

success experience from global COB development, 2) comprehensively and practically assess the 

feasibility of COB development based on values identified from successful implementation, 3) 

forecast future container throughput volume at major seaports to infer the demands in connecting 

inland waterway ports via COB, and 4) form suitable port development and operational strategies 

based on forecasted demand to increase the overall rate of successfully developing COB 

transportation. 

Keywords: Inland water transportation, Maritime industry, Freight transportation, Literature 

Review, Evaluation and assessment, Machine learning   
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1.0 Introduction 

The navigable inland waterway system in the U.S. consists of approximately 12,000 miles of 

navigable inland waterways, 13,000 miles of intracoastal deep channels, 236 lock chambers, and 

191 lock sites and serves 41 out of 50 states (U.S. Army Corps of Engineers (USACE), 2021). The 

system is managed and maintained by the USACE. Exhibit 1 presents a map of the U.S. navigable 

inland waterway system. The four major inland waterways in the U.S. are the Upper Mississippi 

River, Lower Mississippi River, Gulf Intracoastal Waterway, and Atlantic Intracoastal Waterway.   

The navigable inland waterway system plays an essential role in the U.S. freight transportation 

network. The U.S. inland waterways transport approximately 260 billion ton-miles (5%) of 

nation’s freight annually (U. S. Department of Transportation (USDOT), 2021a). The Bureau of 

Transportation Statistics has predicted that, by the year 2045, inland waterway freight will increase 

49.6% in value to $1,031 billion and will increase 18.2% in weight to 1,183 million tons (USDOT, 

2021b). The past data and future predictions indicate that U.S. inland waterway transportation has 

great potential and provides an excellent opportunity to accommodate planned growth in freight 

for the next two decades. 

Exhibit 1. U.S. Navigable Inland Waterway System 

Source: USACE Navigation Data Center GIS Viewer 
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Container on Barge is an intermodal container transportation mode that utilizes barges to move 

containers between seaports and inland waterway ports via navigable intracoastal and inland 

waterways (Shobayo and van Hassel, 2019). With the booming market of global container shipping 

in the last three decades, significant seaports and their connected inland waterways in both 

Northwestern Europe (Netherlands, France, Germany, and Belgium) and China have taken the 

lead in container transportation modal shifting from road (truck) to inland waterway (barge), and 

intermodal container transportation efficiency has been significantly increased in these regions 

(Notteboom et al., 2020).   

One of the most significant advantages of COB transportation is a significant reduction in fuel 

consumption. On average, a barge can move a ton of cargo for 576 miles while consuming only 

one gallon of fuel, while the equivalent is 413 miles for a train and only 155 miles for a truck 

(ODOT, 2017). As a result, barge container transportation decreases 40% of CO2 emissions 

compared to train and 270% compared to the truck (ODOT, 2017). In addition, the infrastructure 

cost of COB transportation is far less than truck or train container transportation where COB 

transportation brings economy of scale, offering an alternative to truck container transportation 

and alleviating port area road congestion (Zweer et al., 2019; Fazi et al., 2015; Ypsilantis and 

Zuidwijk, 2019). 

While COB transportation in Northwestern Europe and China continues to grow and contribute 

economic benefits, COB development in the U.S. lags due to existing infrastructure, policy 

support, financial support, coordinated behavior between maritime container shipping 

stakeholders, and other factors (Liu et al., 2017; Clott et al., 2015; Konings et al., 2010). However, 

as shown in Exhibit 2, with the continued growth of the U.S. container trading market and 

increased containerized imports from Asia, container traffic in the U.S. is exceeding 50 million 

annually (American Association of Port Authorities (AAPA), 2017). The considerable growth of 

container traffic at significant seaports such as the Port of New Orleans and Port of Houston puts 

dramatic pressure on port container handling and inventory capacity, significantly increased port 

area road congestion due to truck container shipping. As a reliable, low-cost, eco-friendly 

alternative transport mode to truck container shipping, COB is receiving increasing attention in 

the United States. In 2020, the U.S. Department of Transportation’s Maritime Administration 

granted a $9.5 million award to Illinois, Indiana, Kentucky, Louisiana, Tennessee, New York, and 
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New Jersey to support maritime highway COB development projects (MARAD, 2020). These 

latest developments may mark the new phase of COB transportation in the United States. 

Exhibit 2. United States Container Trade 

Source: American Association of Port Authorities, 2017 

The overall goal of this research project is to comprehensively assess the feasibility of developing 

COB transportation as a mode of containerized intermodal transportation for individual U.S. inland 

waterway ports and predict the potential container traffic flows in the U.S. inland waterway system 

in order to assist decisionmakers and port stakeholders to generate well-considered investment 

plans and operation strategies to increase the possibility of a successful COB development. 

The overall goal is fulfilled by achieving the following three objectives: 

Research Objective 1: This work aims to describe the status of global COB research, summarize 

information related to vital aspects of COB research among different regions in the world, and 

provide a literature database for future COB studies and development. 

Research Objective 2: This research aims to provide a comprehensive and integrated decision 

support tool that enables U.S. inland waterway ports decision-makers to identify values of COB 

development from multi aspects, practically assess COB success factors with available quantitative 

and qualitative data, and generating better development plans by considering limitations, 

opportunities, and conditions. 
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Research Objective 3: This study aims to discover the driving factors that contribute to the massive 

growth of COB throughput volume in the Northwestern European and Chinese in the past two 

decades. The research seeks to quantify the impacts on COB throughput volume as well as to 

model the mathematical relations between the COB container traffic volume and the identified 

factors.   

2.0 Literature Review   

To support this research, a comprehensive literature review and comparative analysis of Container 

on Barge (COB) research was conducted and published in the Maritime Economics & Logistics 

journal (Bu and Nachtmann, 2021).  The purpose of the published review and comparative analysis 

is to describe the status of COB research, summarize information related to key aspects of COB 

research among different regions in the world, and provide a literature database for future COB 

research and development. The article examines the similarities and differences of 135 existing 

COB studies and classifies each reviewed article to enable future researchers to efficiently locate 

COB transportation information of interest. The findings are organized in the seven sections that 

follow: 1) Annual Publication Count of COB Articles, 2) Journals Publishing COB Research, 3) 

Geographic Region of COB Research, 4) Research Questions Studied in COB Literature, 5) 

Methodological Approaches Employed in COB Research, 6) Advantages of COB, and 7) COB 

Success Factors. Each section describes a key aspect found to be important in describing and 

understanding COB literature with the goal of informing and motivating future growth in the 

research and development of COB transportation. 

The overall findings are summarized here with additional detail provided in the full article (Bu and 

Nachtmann, 2021). 

• The number of COB articles published per year fluctuated between zero and three from 2000 

to 2010 before it began to increase gradually until reaching its peak in 2020 with nineteen 

articles published. The overall conclusion is that COB research is receiving increasing attention 

from scholars. 

• Related to journals publishing COB research between 2000 and 2021, COB publications 

appear most frequently in the Journal of Transportation Geography (10), European Journal of 

Operational Research (9), Transportation Research Part E: Logistics and Transportation 
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Review (9), Maritime Economics & Logistics (7), and Transportation Research Record (7). 

The wide array of publication types indicates that scholars across a wide array of domain 

expertise (including engineering, computer science, and business) are researching COB. 

• The geographic reach of COB research is reflected in the regional scope of the published 

articles. The majority of articles with a regional focus (102) focused on the Netherlands (26%), 

followed by China (13%), Germany (10%), Belgium (10%), and the United States (8%). 

• The research questions studied in COB literature were reviewed and found to be widely varied. 

The most common research questions were intermodal transportation network design (16%), 

followed by ship routing problem (14%), barge container terminal operation (13%), 

comparative strategies for COB development (12%), barge handling efficiency (10%), and 

empty container repositioning by barge (6%). 

• The review also examines the methodological approach employed in each reviewed article. 

The most frequently applied methodological approach to COB research was simulation (23%), 

followed by case study analysis (19%) network optimization (11%), economic analysis (10%), 

and mixed-integer programming (10%). 

• The most frequently published advantages of COB were found to be low cost (19%), 

environmentally friendly (11%), reliability of COB (7%), reducing road congestion (5%), and 

economies of scale (5%). 

• The key success factors of COB were found to be infrastructure investment (8%), container 

market growth (7%), navigability of inland waterways (5%), availability of inland waterways 

(4%), terminal operations efficiency (4%), hinterland access of major seaports (4%), and 

enabling government policies (4%). 
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3.0 Value-Focused Thinking Assessment of Container on Barge Maritime Transportation 

Readiness 

3.1 Introduction 

Value-focused thinking (VFT) is a decision analysis philosophy developed by Keeney (1992) that 

contrasts the traditional decision alternative-focused thinking. Keeney (1992) describes values as 

the aspects that decision-makers care about and spend time and effort thinking about when making 

decisions. Instead of thinking carefully about the values important to the decision, decision-makers 

often skip this step in the decision process and simply compare available alternatives to make a 

choice. However, in the framework of VFT, the decision analyst begins with thinking about and 

understanding the values relevant to the decision problem first in order to identify the important 

decision objectives. Rather than simply choosing between presented alternatives, values can guide 

creative thinking to generate better alternatives to meet the decision objectives. As Keeney (1992) 

emphasizes, decisions can only be better if decision makers have better alternatives and choosing 

between poor alternatives can only lead to a poor final decision. 

Researchers have applied VFT to conduct feasibility and assessment studies in maritime 

transportation. Merrick et al. (2004) formulated a multi-objective decision analysis (MODA) 

model with the application of VFT to perform a comprehensive watershed evaluation in 

Richmond, VA. The MODA modal enabled decision-makers to see social, economic, and 

environmental values to make practical plans to improve watershed management effectiveness in 

maritime transportation. Nachtmann and Pohl (2013) developed a Transportation Readiness 

Assessment and Valuation for Emergency Logistics (Travel) scorecard based on the VFT 

framework to assist county or state-level decision-makers in evaluating emergencies and 

generating better emergency operation plans in utilizing transportation resources. Tong et al. 

(2015) presented a VFT-based cargo value decreasing rate model to evaluate the total value loss 

of cargo transported in inland waterways when disruptive events occur in any cargo shipping 

segment of the network. Wilby et al. (2019) built a waterborne investment assessment model based 

on the VFT framework to support the U.S. Army Corps of Engineers in forming better investment 

strategies for inland waterway and seaborne infrastructure maintenance. Boudhoum et al. (2021) 

constructed a VFT-based qualitative model for inland waterway stakeholders in the U.S. to assess 
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project investment to achieve optimal benefits from multiple aspects including environmental 

protection, flood protection, recreational benefits, water supply, and hydropower production. 

3.2 Methodology and Application 

The value-focused thinking-based methodology and the COB Readiness Assessment Scorecard 

implementation are described and illustrated with a step-by-step assessment example performed 

at the Port of Shanghai. This section also introduces the nine global ports that are assessed by the 

COB Readiness Assessment Scorecard in this study. 

The nine global ports presented in Exhibit 3 were selected to demonstrate the application of the 

COB Readiness Assessment Scorecard. There are two types of COB development status among 

the ports as shown in Exhibit 3; "Developed" where COB is currently functioning as a mature 

container shipping mode at the port and "In Development" where COB is still being developed at 

the port and has not yet become a primary container shipping mode. 

Five "Developed" ports are located in the Netherlands, Belgium, and China. These three countries 

were identified by Bu & Nachtmann (2021) as the global leaders in COB transportation, and the 

Port of Shanghai, Port of Rotterdam, and Port of Antwerp have the most developed COB 

transportation according to the literature (Notteboom et al., 2020). Therefore, assessing these ports 

provides case analyses of the COB readiness of highly developed COB ports and comparative 

benchmarks for other less developed ports and future analyses. In addition, four U.S. "In 

Development" ports were chosen for study as shown in Exhibit 3. These four ports were chosen 

by the U.S. federal government to receive funding for COB development in 2020 (Maritime 

Administration, 2020) and provide examples of the readiness of less developed COB ports. In 

summary, these nine ports allow for a comparison between ports with varying levels of COB 

development status and demonstration of the COB Readiness Assessment Scorecard capability. 



12 

Exhibit 3. Ports Selected for Study 

Port Name Country COB Development Status 
Port of Shanghai China Developed 
Port of Ningbo-Zhoushan China Developed 
Lianyungang Port China Developed 
Port of Rotterdam Netherlands Developed 
Port of Antwerp Belgium Developed 
Port of Greater Baton Rouge U.S. In Development 
Port of New Orleans U.S. In Development 
America's Central Port U.S. In Development 
Port of New York U.S. In Development 

3.3 COB Readiness Assessment Scorecard Development and Implementation 

In this section, a customized six step VFT-based process (Keeney, 1992; Parnell et al., 2013; 

Nachtmann & Pohl, 2013) employed by the COB Readiness Assessment Scorecard (see Exhibit 

4) is described. Additionally, each step is illustrated with a case analysis performed on the Port of 

Shanghai. 

Exhibit 4: Container on Barge Readiness Assessment Process 

Step 1: Define Decision Problem 

In Step 1, the decision problem is defined to generate value measures that address stakeholder 

values before the decision alternatives are selected. This decision problem for COB readiness 

provides a comprehensive and integrated decision support tool that assesses relevant factors and 

measurements for limitations, opportunities, and conditions for ports/terminals that want to 

evaluate COB implementation. In the illustrative case analysis, the decision problem is to assess 

the COB readiness for the Port of Shanghai. 

Step 1: 
Define 
Decision 
Problem 

Step 2: 
Create 
Value 
Hierarchy 

Step 3: Develop 
Measurements 

step 4: 
Create Value 
Functions 

Step 5: 
Weight 
Value 
Hierarchy 

Step 6: 
Perform COB 
Readiness 
Assessment 
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Step 2: Create Value Hierarchy 

In Step 2, we utilize a value hierarchy (Parnell et al., 2013) with three layers as shown in Exhibit 

5 to categorize and organize objectives for the decision problem defined in Step 1. The 

fundamental objective is COB Readiness Assessment, as shown in the top layer. The middle layer 

subdivides the fundamental objective into four supporting objectives that are mutually exclusive 

and exhaustive. A brief description of each supporting objective is presented in Exhibit 6. The 

third layer contains the minimum number of attributes that can be measured to evaluate the 

performance of their connected supporting objective. The research team created the value 

hierarchy by reviewing 135 COB publications (Bu & Nachtmann, 2021) and identifying the most 

important stakeholder values in COB transportation. 

Exhibit 5. COB Readiness Assessment Scorecard Value Hierarchy 

COB Readiness 
Assessment 

Port Infrastructure 

Delayed Barge 
Handling Time 

Container 
Inventory Capacity 

Intermodal 
Connectivity 

Annual 
Maintenance Cost 

Intermodal 
Network 

Container Traffic 
Flow 

Seaports 
Connectivity 

Waterway Depth 

Bridge Height 

Competitive 
Market 

Barge 
Transportation 
Market Share 

Empty Container 
Repositioning 

Demand 

Population Density 

Governing Policies 
and Regulations 

Coordinated 
Government Action 

Coordinated 
Industry Action 

Environmental 
Protection 

Regulations 
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Exhibit 6. Supporting Objectives 

Supporting Objective Description 
Port Infrastructure Evaluate the conditions of existing port infrastructure that is 

necessary to develop COB transportation 
Intermodal Network Assess the intermodal network of the port since the development of 

COB is heavily reliant on container throughput volume in the 
network 

Competitive Market Evaluate the market potential for COB transportation in the port-
located area 

Governing Policy and 
Regulations 

Assess the level of support a port can gain from the local governing 
policies and regulations and also assess the coordination level 
among industrial stakeholders of the port 

Step 3: Develop Measurements 

Step 3 develops measurements to evaluate each attribute on the third layer of the value hierarchy 

developed in Step 2. This is a crucial step to implementing VFT and building a scorecard (Keeney, 

1992). Measurements can be classified as natural or constructed where a natural measure is widely 

utilized and generally interpreted, such as MPH (miles per hour) and a constructed measure is used 

when natural measures are unavailable or unsuitable for the case. An example of a constructed 

measure is the five-star scale created by the Kelley Blue Book (https://www.kbb.com/) to measure 

automobile valuation. 

After discussions with stakeholders with various backgrounds, the research team decided to use 

and design constructed measures for all attributes. The constructed measurements are tailored to 

evaluate the attributes, and in this application, are more feasible to reflect value preferences from 

stakeholders when assessing the COB readiness of a port. The measurements were determined 

through comprehensive review of the relevant literature (Bu & Nachtmann, 2021), adjusted by 

discussing and consulting with stakeholders, and finalized by the research team. Exhibit 7 presents 

the measurement scales of each attribute the research team developed based on the related 

qualitative and quantitative data. COB Readiness Assessment Scorecard users can use Exhibit 7 

to perform the assessment and obtain a Score for each attribute defined in the Value Hierarchy. In 

this step, all fourteen attributes in the Value Hierarchy must be assessed using the port’s data, and 

associated scale levels must be chosen for each attribute. 

https://www.kbb.com
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For instance, when assessing the Port of Shanghai using information provided in Exhibit 7, the 

attribute Population Density was assessed as follows. The Rural-Urban Continuum Code (RUCC) 

is used to assess the population density of port located county as the defined measurement of 

Population Density. There are five different scales for Population Density. Because Shanghai is a 

megacity with a population larger than 24 million (Information Office of Shanghai Municipality, 

2019), its RUCC is equivalent to 1. Therefore, a Score of 5 should be assigned for the Port of 

Shanghai on Population Density. Following the same method, the remaining attribute Scores of 

the Port of Shanghai are assessed and can be found in Exhibit 11. 

Exhibit 7. Measurements and Scales for Attributes 

Attribute Measurement Scales Score 

Delayed Barge 
Handling Time 

0-25% daily average late departures 4 
26-50% daily average late departures 3 
51-75% daily average late departures 2 
76-100% daily average late departures 1 

Container 
Inventory 
Capacity 

213 inventory slots and above 5 
171 to 212 inventory slots 4 
155 to 170 inventory slots 3 
125 to 154 inventory slots 2 
124 inventory slots and below 1 

Intermodal 
Connectivity 

Two Direct access modes 5 
One Direct access mode and one Indirect access mode 4 
Two Indirect access mode 3 
One Indirect access mode 2 
No access modes 1 

Annual 
Maintenance 
Cost 

Annual maintenance cost < Annual maintenance budget 3 
Annual maintenance cost = Annual maintenance budget 2 
Annual maintenance cost > Annual maintenance budget 1 

Container Traffic 
Flow 

10 or more commodities groups 5 
7 to 9 commodities groups 4 
4 to 6 commodities groups 3 
1 to 3 commodities groups 2 
0 commodities groups 1 

Seaports 
Connectivity 

2 or more seaports connected within 300 miles 3 
1 seaport connected within 300 miles 2 
No seaports connected within 300 miles 1 

Waterway Depth 
Deeper than 12 feet 3 
9 to 12 feet deep 2 
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Lower than 9 feet deep 1 

Bridge Height 
Above 27 feet high 3 
Above 18 feet high but below 27 feet high 2 
Below 18 feet high 1 

Barge 
Transportation 
Market Share 

11.6% and above of market share 4 
4.5% to 11.5% of market share 3 
0.5% to 4.4% of market share 2 
0.4% and below of market share 1 

Empty Container 
Repositioning 
Demand 

0.67 and above imbalance ratio 5 
0.51 to 0.66 imbalance ratio 4 
0.30 to 0.50 imbalance ratio 3 
0.16 to 0.29 imbalance ratio 2 
0.15 and below imbalance ratio 1 

Population 
Density 

Rural-Urban Continuum Code (RUCC) = 1 5 
RUCC = 2 or 3 4 
RUCC = 4 or 5 3 
RUCC = 6 or 7 2 
RUCC = 8 or 9 1 

Coordinated 
Government 
Action 

9 components present 5 
6-8 components present 4 
3-5 components present 3 
1-2 components present 2 
no component present 1 

Coordinated 
Industry Action 

8 components present 5 
6-7 components present 4 
3-5 components present 3 
1-2 components present 2 
no component present 1 

Environmental 
Protection 
Regulations 

5 components present 5 
4 components present 4 
2-3 components present 3 
1 component present 2 
no component present 1 

Step 4: Create Value Functions 

Due to the complexity of assessing the COB readiness of ports, directly using scale scores defined 

in Exhibit 7 is insufficient to distinguish different value preferences from decision-makers 

accurately. Thus, we create value functions to transfer and normalize scale scores obtained from 
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Step 3 to a unified range of values from 0 to 100. A Value of 0 indicates the least preferred result, 

and a Value of 100 indicates the most preferred result. The large value range of 0 to 100 allows 

more sensitivity by reflecting slight differences in value preferences from COB Readiness 

Assessment Scorecard users. The general expressions for value functions are: 

vi = ci(si), i = 1, …, n (1) 

where vi is the Value of the ith attribute, si is the Score of the ith attribute obtained from Step 3, 

and ci is the single-dimensional value function that converts si to vi. 

COB Readiness Assessment Scorecard users can flexibly modify any value functions based on 

their preferences. By working together with the contacted COB experts (C. Tian, private contact, 

March 2022; J. Yi, private contact, March 2022), the research team developed six types of value 

functions to transfer Scores to Value for all attributes defined in the Value Hierarchy. Exhibit 8 

presents the six value functions developed for the COB Readiness Assessment Scorecard, and 

Exhibit 9 shows which value function is used to measure values for each attribute. 

When performing Step 4 on the Port of Shanghai, for example, a Score of 1 was obtained for the 

attribute Delayed Barge Handling Time in Step 3. We first look at Exhibit 9 and find out that this 

attribute should be assessed by the Type A value function. Next, we use the Type A value function 

plotted in Exhibit 8 and obtain a Value of 50 for the Score of 1. This process is repeated to obtain 

value scores for the remaining attributes, and the results of the Port of Shanghai analysis are 

presented in Exhibit 11. 
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Exhibit 8. Value Function Types 

  

Exhibit 9. Value Function Type Assigned to each Attribute 

Type Attributes 
A Delayed Barge Handling Time 
B Container Inventory Capacity 
C Barge Transportation Market Share 
D Annual Maintenance Cost, Bridge Height, Seaports Connectivity 
E Waterway Depth 
F Container Traffic Flow, Coordinated Government Action, 

Coordinated Industry Action, Empty Container Repositioning 
Demand, Environmental Protection Regulations, Intermodal 
Connectivity, Population Density 

50 
71 

87 
100 

0 

50 

100 

1 2 3 4 

V
al

ue
 

Score 

(A) 

20 
40 

60 
80 

100 

0 

50 

100 

1 2 3 4 5 

V
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Score 

(B) 

0 

33 

67 

100 

0 

50 

100 

1 2 3 4 

V
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Score 

(C) 

0 

50 

100 

0 

50 

100 

1 2 3 
V
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ue

 

Score 

(D) 

50 
75 

100 

0 

50 

100 

1 2 3 

V
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ue
 

Score 

(E) 

0 
25 

50 
75 

100 

0 

50 

100 

1 2 3 4 5 

V
al

ue
 

Score 

(F) 



19 

Step 5: Weight Value Hierarchy 

Step 5 aims to assign weights to the Value Hierarchy attributes to distinguish their importance 

levels in assessing COB readiness. In the COB Readiness Assessment Scorecard, the Swing 

Weight Matrix (Parnell et al., 2013, pp. 201-203) is implemented to conduct the weight-assigning 

process. The research team worked with the contacted COB experts to rank the importance levels 

and determine swing weights for the attributes. Next, the swing weights are normalized as: 

𝑤𝑤𝑖𝑖 = 𝑓𝑓 𝑖𝑖 
∑ 𝑓𝑓 𝑖𝑖 
𝑛𝑛 
𝑖𝑖=1

                                                              (1) 

where fi is the assigned swing weight for the ith attribute, wi is the normalized weight for the ith 

attribute, and i = 1 to n is the attribute's index. The resulting swing weights and normalized weights 

for each attribute are presented in Exhibit 10. These are applicable to the Port of Shanghai case 

analysis and to all other ports studied in this work. COB Readiness Assessment Scorecard users 

can change the attribute swing weights according to their preferences. 

Exhibit 10. Swing Weights and Normalized Weights for Attributes 

Attribute Swing Weight (fi) Normalized Weight (wi) 
Seaports Connectivity 100 0.12 
Barge Transportation Market Share 80 0.09 
Container Traffic Flow 75 0.09 
Intermodal Connectivity 75 0.09 
Coordinated Government Action 75 0.09 
Annual Maintenance Cost 75 0.09 
Bridge Height 60 0.07 
Container Inventory Capacity 60 0.07 
Coordinated Industry Action 60 0.07 
Empty Container Repositioning Demand 50 0.06 
Population Density 50 0.06 
Waterway Depth 40 0.05 
Delayed Barge Handling Time 35 0.04 
Environmental Protection Regulations 30 0.03 

Total 1.0 
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Step 6: Perform COB Readiness Assessment 

Step 6 calculates a final COB Readiness Score for the port being assessed. This COB Readiness 

Score ranges from 0 to 100, where 0 indicates no readiness and 100 indicates perfect readiness 

conditions to develop COB transportation at the port. 

The final COB Readiness Score can be obtained as:   

𝑣𝑣 (𝑥𝑥 ) = ∑ 𝑣𝑣𝑖𝑖 𝑤𝑤𝑖𝑖 
𝑛𝑛
𝑖𝑖 =1 (2) 

where v(x) is the COB Readiness Score for port x, wi is the normalized weight for the ith attribute, 

and vi is the Value score of the ith attribute. The defined readiness levels associated with the COB 

Readiness Score are as follows: 

• Very Ready: 86 to 100 

• Ready: 75 to 85 

• Minimally Ready: 60 to 74. 

• Not Ready: 0 to 59. 

The illustrative results from Steps 3 through 6 of the Port of Shanghai case analysis are presented 

in Exhibit 11. We calculated the weighted value (wivi) for each attribute. For example, the 

normalized weight (wi) and the value (vi) of Delayed Barge Handling Time (as defined in Appendix 

A) are 0.040 and 50 respectively. Thus, this attribute’s weighted value (wivi) is calculated as 

0.04*50 = 2. This process is repeated to obtain the weighted values for all attributes. Then, the 

Port of Shanghai’s total COB Readiness Score is calculated by summing up the weighted Value 

scores for all attributes. As indicated in the last row in Exhibit 11, the Port of Shanghai scored 92 

out of 100 on its COB Readiness Score. 
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Exhibit 11. Assessment Results for the Port of Shanghai 

Attribute Score Value Normalized 
Weight 

Weighted 
Value 

Delayed Barge Handling Time 1 50 0.040 2 
Container Inventory Capacity 5 100 0.069 7 
Intermodal Connectivity 4 75 0.087 7 
Annual Maintenance Cost 3 100 0.087 9 
Container Traffic Flow 5 100 0.087 9 
Seaports Connectivity 3 100 0.116 12 
Waterway Depth 3 100 0.046 5 
Bridge Height 3 100 0.069 7 
Barge Transportation Market Share 4 100 0.092 9 
Empty Container Repositioning Demand 4 75 0.058 4 
Population Density 5 100 0.058 6 
Coordinated Government Action 4 75 0.087 7 
Coordinated Industry Action 5 100 0.069 7 
Environmental Protection Regulations 5 100 0.035 3 

COB 
Readiness 
Score 

92 

3.4 Assessment Results and Analysis 

The remaining eight ports were assessed following Steps 3 through 6 as demonstrated in the Port 

of Shanghai case analysis discussed in the previous section. The results of all nine ports are 

presented in Exhibit 12. We adopted a stacked column chart and added an additional “Ideal Port” 

that indicates the ideal maximum COB Readiness Score a port could earn. The readiness of each 

port to develop COB is measured by the total COB Readiness Scores as presented in Exhibit 12. 
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Exhibit 12. COB Readiness Assessment Results for All Ports 

In this study, six out of the nine ports have a COB Readiness Score above 86 and are Very Ready 

to develop Container on Barge. Among these, the Port of Rotterdam received the highest 

assessment result (98), which concurs with the literature indicating that the Port of Rotterdam is 

in the leading position of global COB development (Notteboom et al., 2020). Examining Exhibit 

12, it can be seen that the attribute preventing the Port of Rotterdam from getting a perfect 100 is 

Delayed Barge Handling Time, which scored 2 out of 4 due to its moderate daily delay in barge 
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handling processes. Next, the Port of Shanghai and the Port of Ningbo-Zhoushan are tied for 

second place with a COB Readiness Score of 92. The two Chinese ports received the maximum 

weighted value on most attributes. However, compared to the Port of Rotterdam, they scored less 

on Delayed Barge Handling Time due to the even heavier daily barge delays. They also scored 

less on the attribute Empty Container Repositioning Demand due to the fewer empty container 

repositioning demands. Furthermore, the two ports scored lower on Coordinated Government 

Action, because during China’s One Road, One Belt development, Chinese maritime ports have 

had fewer supportive policies from the government with their modal shifting incentives in favor 

of rail transportation over barges. Following these in COB readiness are the Port of Antwerp and 

the Port of New Orleans, which both scored 89. When comparing these two ports, Port of New 

Orleans is in a less ready position than the Port of Antwerp in terms of Coordinated Government 

Action and Container Inventory Capacity. Nevertheless, the Port of New Orleans is located in a 

more population-dense area with more container shipping demands than the Port of Antwerp. 

Thus, it has more opportunities for future COB development. Last, Lianyungang Port scored 86. 

This result is slightly less than the other five ports in the 85 to 100 range, because Lianyungang 

Port does not have enough Intermodal Connectivity and Container Traffic Flow advantages. 

Next, two ports scored in the 75 to 85 range, indicating Ready to develop container on barge. They 

are the Port of New York with a COB Readiness Score of 82 and the Port of Greater Baton Rouge 

with a score of 80. The disadvantages and advantages of the Port of New York are shown in Exhibit 

12. This port has the lowest value score on Delayed Barge Handling Time and Barge 

Transportation Market Share and the highest score on Coordinated Government Action and 

Environmental Protection Regulations among all ports. On the other hand, the Port of Great Baton 

Rouge scored the lowest value scores on Container Inventory Capacity and Empty Container 

Repositioning and managed to score at relatively good levels on the rest of the attributes. 

With a COB Readiness Score of 67 (Marginally Ready), America’s Central Port holds the lowest 

readiness position among the nine ports assessed in this study. It is the only port that scored below 

75. The most considerable drawback is that the port is not connected to any significant seaports 

within 300 miles. Moreover, the port is also significantly behind the others in terms of 

Environmental Protection Regulations and Annual Maintenance Cost. America’s Central Port was 

already chosen by the U.S. government and awarded federal funding to develop its COB 
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transportation.  However, based on its COB Readiness Score (67), the port will likely face 

upcoming COB development challenges since it scored relatively low on some highly weighted 

attributes. 

Overall, ports in the EU and China tend to outperform their U.S. counterparts on multiple 

attributes: Container Inventory Capacity, Empty Container Repositioning Demand, Coordinated 

Industry Action, and Environmental Protection Regulations. These regions exhibit a higher 

container stacking capacity, which is critical for sustaining port container throughput growth. 

Additionally, high demand for empty container shipping is a vital element in creating strong 

demand for COB business. Moreover, enhanced coordination among container shipping 

stakeholders can significantly increase COB market growth, which benefits long-term COB 

development. Furthermore, tight environmental regulations in these regions encourage a rapid shift 

from truck and train to barge container shipping (Bu & Nachtmann, 2021). Consequently, these 

four attributes emerge as pivotal success factors for EU and Chinese ports and simultaneously 

highlight areas for improvement in U.S. ports. As COB matures differently across these regions, 

reducing these gaps becomes important for the advancement of U.S. ports in COB development. 

On the other hand, U.S. ports uniformly score 8.7 out of 8.7 in Intermodal Connectivity, indicating 

a robust connectivity in the intermodal shipping network with potential for facilitating a shift from 

trucks and trains to barges. While the success of this transition depends on future market growth, 

it remains a distinct advantage for U.S. ports. Additionally, U.S. ports are on par with EU and 

Chinese ports regarding Coordinated Government Action, reflecting recent increases in U.S. 

government support to expedite COB development. Should this support extend to additional U.S. 

ports, such sustained governmental efforts are anticipated to further advance U.S. COB 

development. 

In summary, every port has its advantages and disadvantages related to COB readiness, as 

discussed above. Except for America’s Central Port, all studied ports have demonstrated Very 

Ready or Ready conditions for COB development. On average, ports in China and the EU have 

higher total assessment scores than the U.S. This result concurs with the fact that these foreign 

ports have successfully executed COB transportation for decades. Nevertheless, we believe that 

the U.S. ports studied in this work are in good stages of readiness to develop successful COB 
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transportation. In addition, their conditions should further improve in the future as they allocate 

more resources to COB development. 

3.5 Summary 

This project contributes a value-focused thinking-based scorecard to assist transportation 

stakeholders in evaluating COB development readiness at maritime ports in the United States. The 

COB Readiness Assessment Scorecard is developed based on three foundations: 1) a literature 

review of global COB transportation conducted by Bu & Nachtmann (2021), 2) the philosophy 

and framework of VFT (Keeney, 1992) combined with the decision analysis methodologies 

created by Parnell et al. (2013), and 3) port assessment data collected by the research team and 

contacted COB experts. To demonstrate the application of the COB Readiness Assessment 

Scorecard and to test its capability and practicality, a step-by-step case analysis of the Port of 

Shanghai is presented along with an assessment of nine global COB ports in total. 

The COB Readiness Assessment Scorecard implements all constructed measures, including direct 

and indirect measures. It utilizes qualitative and quantitative data, which can be retrieved from 

government databases or port websites to assess COB readiness effectively. This advantage helps 

break through the bottleneck of assessing the preconditions of COB development when the U.S. 

ports lack real-world industry data and COB success stories. The COB Readiness Assessment 

Scorecard can be implemented to evaluate seaports and inland waterways, and additionally, it can 

assess both developed and developing COB ports around the world. From the assessment results 

of the EU and Chinese ports, the validated performance of the COB Readiness Assessment 

Scorecard successfully reflects the industry status of world-leading COB ports. The results indicate 

that U.S. ports, in general, have shortcomings in Coordinated Industrial Action, Empty Container 

Repositioning Demand, and Container Inventory Capacity as compared to ports located in the EU 

and China. In general, the total COB readiness of U.S. ports is found to be lower than non-U.S. 

ports as reported in the literature. This effort has resulted in a manuscript currently under review 

at the Engineering Management Journal. 
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4.0 Container Traffic Forecasting for Container on Barge Transportation in the United 

States 

4.1 Introduction 

Starting in the 1980s, there has been a growing body of research focused on predicting container 

traffic volume (CTV), signifying notable advancements in this area of study (Yang & Chang, 

2020). The application of machine learning (ML) in predicting CTV with time series data is also 

becoming increasingly popular because of its ability to handle complex data patterns and making 

accurate predictions. A common practice of implementing ML for forecasting is to collect 

historical CTV data to train and test the machine learning models, then make predictions on future 

CTV. This is due to the fact that historical time series CTV data can reveal important trends or 

patterns for the future. 

Here, we explore machine learning and deep learning algorithms designed to predict target 

variables using only independent variables as inputs. These models present a compelling 

alternative to conventional methods that depend on historical data of the target variable, offering 

an innovative approach to predictive analytics. Pan et al. (2021) utilized a ridge regression (RR) 

model to forecast carbon emissions in China, based on four independent variables: population, 

working-age population ratio, Engel coefficient, and the proportion of secondary industry 

employees. Their research validated the model's capability in accurately predicting CO2 

emissions, underscoring the significance of selecting relevant variables. Fan et al. (2021) 

demonstrated the effectiveness of support vector regression (SVM) in predictions using 

independent variables. They observed that with appropriate kernel function selection and 

parameter tuning, SVM could effectively model complex, non-linear relationships between 

variables, thereby improving prediction accuracy. Li et al. (2022) applied long short-term memory 

(LSTM) neural networks to forecast dengue cases, comparing models with and without historical 

dengue data inputs. Their results suggested that while the absence of historical data slightly 

reduced accuracy, the models still achieved commendable forecasting performance. Furthermore, 

Zeng et al. (2017) developed a (back propagation neural network) BPNN model leveraging 

economic indicators to predict energy demand. Their findings indicated consistent and reliable 

results, supporting the prevalent use of economic factors for national energy demand forecasting. 
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Kharfan et al. (2021) employed a random forest (RF) model to predict seasonal fashion product 

demand without historical sales data. They found that the flexibility of the RF model enabled 

superior predictive accuracy, surpassing linear regression and SVM models. Finally, Qiu et al. 

(2022) implemented an eXtreme Gradient Boosting (XGBoost) algorithm for solar radiation 

prediction. The study illustrated that, despite lacking historical data, the XGBoost model 

maintained high accuracy, rivaling other empirical methods. This exploration of various models 

highlights the potential and versatility of machine learning and deep learning techniques in 

forecasting scenarios where historical data is not available. 

While many studies employ various methods for this task, the focus predominantly lies on 

seaports. In contrast, research addressing inland waterway transportation, and inland ports remains 

notably sparse. Tang et al. (2019) utilized grey models, RR, and BPNN to predict container 

volumes at Lianyungang and Shanghai Ports, where BPNN emerged as the most effective, 

particularly when multiple years of historical data were incorporated. Ding et al. (2019) assessed 

the performances of BPNN and SVM in forecasting container traffic at Ningbo and Wenzhou 

Ports. While SVM slightly outperformed BPNN, a hybrid approach combining SVM with BPNN 

reduced the average error to below 1.5%. In addition, multiple studies have confirmed that LSTM 

or CNN+LSTM models can achieve stable and high accuracy in CTV forecasting (Yang & Chang, 

2020; Shankar et al., 2020; Shankar et al., 2021). The related articles showed that LSTM is a 

flexible model to combine with other methods and can take historical container volume data alone 

as input or in conjunction with other independent variables to maintain a high forecasting accuracy 

level. Moreover, Awah et al. (2021) employed a RF model to forecast CTV at Douala Port, 

achieving an MAPE of less than 1%. Notably, RF models yielded the two best results in forecasting 

accuracy among the ten models compared in the study. Recently, Jin et al. (2023) applied the 

XGBoost model to predict daily in and out container movements at the Beilun terminal of Ningbo 

Zhoushan Port. The results were found to be comparable to those obtained using the ARIMA 

model. 

Limited research has been conducted on forecasting CTV for inland waterway transportation. 

Bernacki and Lis (2021) used a linear regression model to forecast small and medium-sized ports 

in the Polish waterway system which covers multiple inland waterway ports. The author mentioned 

that the forecasting on the total inland waterway CTV could be achieved relatively easily because 
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the competition among multiple ports in the same system does not need to be considered in this 

case. In addition, Van Meir et al. (2022) focused on the Rhine River, using data from gateway 

seaports like the Port of Antwerp and Port of Rotterdam, along with the Industrial Production Index 

(IIP) and water level data, for their forecasts. The authors emphasized the scarcity of research in 

this area but acknowledged the growing importance of inland waterway transportation, calling for 

more comprehensive container traffic forecasting studies in the future. 

It is a common practice to employ multiple machine learning methods in one study to predict 

container volumes and compare their performances to obtain the best forecasting accuracy (Ding 

et al., 2019; Tang et al., 2019; Awah et al., 2021). This comparative approach serves dual purposes: 

1) it allows for the identification of the most effective model by leveraging the unique strengths 

and mitigating the weaknesses of each method, and 2) it provides additional validation and 

credibility to the forecasting results and thereby bolsters the reliability of the forecasted outcomes. 

4.2 Economic Indicators 

Numerous economic indicators play important roles in CTV forecasting. In various studies, they 

are called by different names including attributes, predictors, independent variables, inputs, 

explanatory variables, etc. But in this research, we uniformly refer to them as features. Academic 

literature reveals that researchers often incorporate a variety of features in addition to historical 

CTV data to enhance the accuracy of their forecasts. Furthermore, it is standard practice to review 

prior published studies to identify important features that have been empirically validated as being 

highly correlated with CTV. This approach helps us to gain a better understanding of container 

traffic forecasting, and it is even more important if no historical data is used for the forecasting 

task. 

Exhibit 13 presents a comprehensive list of the features studies in the reviewed articles. Each 

feature is accompanied by a brief description and citations to the related published articles, 

providing a validated basis for their inclusion in our forecasting modeling. 
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Exhibit 13. Features in container traffic forecasting 

No Feature Type Description Source (Article) 
1 Gross 

Domestic 
Product 
(GDP) 

Measures the total value of all goods 
and services produced within a 
country's borders. 

Gosasang et al. (2018), Tang et 
al. (2019), Shankar et al. (2021), 
Bernacki & Lis (2021), Van 
Meir et al. (2022), Matczak 
(2020), Kawasaki et al. (2022), 
Gołębiowski (2016) 

2 Import 
Freight 
Volume 

Volume of goods imported into a 
country, often measured in tons or 
TEUs (Twenty-foot Equivalent 
Units). 

Gosasang et al. (2018), Tang et 
al. (2019), Shankar et al. (2021), 
Matczak (2020), Kawasaki et al. 
(2022), Caliskan & Karaöz 
(2019) 

3 Export 
Freight 
Volume 

Volume of goods exported from a 
country, often measured in tons or 
TEUs. 

Gosasang et al. (2018), Tang et 
al. (2019), Shankar et al. (2021), 
Matczak (2020), Kawasaki et al. 
(2022), Caliskan & Karaöz 
(2019) 

4 Labor Market 
Indicator 

Demographic and labor market 
indicators, including total 
population, employment rate, and 
unemployment rate. 

Gosasang et al. (2018), Tang et 
al. (2019), Shankar et al. (2021), 
Matczak (2020), Kawasaki et al. 
(2022) 

5 Producer 
Price Index 
(PPI) 

Measures the average change in 
selling prices received by domestic 
producers for their output. 

Gosasang et al. (2018), Tang et 
al. (2019), Shankar et al. (2021), 
Van Meir et al. (2022), 
Kawasaki et al. (2022) 

6 Rail Freight 
Volume 

Volume of goods transported by rail, 
often measured in tons or TEUs. 

Tang et al. (2019), Tufano et al. 
(2023), Gołębiowski (2016) 

7 Truck Freight 
Volume 

Volume of goods transported by 
truck, often measured in tons or 
TEUs. 

Tang et al. (2019), Tufano et al. 
(2023), Gołębiowski (2016) 

8 Exchange 
Rate of 
Currency 

The value of one currency for the 
purpose of conversion to another. 

Gosasang et al. (2018), Shankar 
et al. (2021), Van Meir et al. 
(2022), Caliskan & Karaöz 
(2019) 

9 Consumer 
Price Index 
(CPI) 

Measures the average change in 
prices paid by consumers for goods 
and services. 

Gosasang et al. (2018), Tang et 
al. (2019), Shankar et al. (2021), 
Kawasaki et al. (2022) 

10 Fuel Price The cost of fuel, often measured per 
liter or gallon. 

Shankar et al. (2021), Caliskan 
& Karaöz (2019) 

11 Interest Rate The cost of borrowing money, often 
expressed as a percentage. 

Gosasang et al. (2018) 

12 Water Level The height of water in rivers or 
lakes, which can affect inland 
waterway transport. 

Van Meir et al. (2022) 
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4.3 Data Preparation 

We leverage available data to undertake an empirical case study focused on the European inland 

waterway transportation by gathering time series data for the twelve features identified in our 

literature review. These features are used to train various machine learning and deep learning 

models, aiming to predict CTV in the European COB transportation system. Additionally, we 

collect actual historical data pertaining to the EU's inland waterway CTV. This will enable us to 

compare our forecasted results with the actual historical container volumes, thus facilitating a 

comprehensive assessment of the implemented models and aid in the selection of the most 

effective approach. 

We gathered quarterly data from 2007 to 2022 on the total CTV via European inland waterway 

transportation (https://ec.europa.eu/eurostat), ensuring there were no missing values. This data 

includes CTV from all European Union (EU) countries. Exhibit 14 describes the data collected for 

the twelve features identified in our literature review. We use abbreviations for each feature type 

to enhance conciseness and clarity in both documentation and subsequent coding processes. 

For each feature, we selected the most relevant and readily available indicator. For instance, for 

GDP, we used the quarterly GDP data in Euros, as they are the most directly related and accessible 

data. In contrast, for the Labor Market Indicator, we opted to use the quarterly unemployment rate 

due to the unavailability of other potential indicators, such as total employment rate or time series 

data on working population changes. Following this rationale, we collected data for the twelve 

features (https://databank.worldbank.org/). As shown in Exhibit 14, our goal was to gather data 

for each feature with consistent seasonality, in this case, quarterly data. However, for features No.9 

and No.12, only monthly data was available. Therefore, we calculated the average of three months' 

data within each quarter to convert the monthly data into a quarterly format for these two features. 

Consequently, the assembled dataset for training features is structured as 64 rows by 12 columns. 

With only three values missing, we employed the mean imputation method to fill these gaps.  

https://ec.europa.eu/eurostat
https://databank.worldbank.org
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Exhibit 14. Data collected for the twelve features. 

No Feature Type 
Identified Abbreviation Available Data 

Collected Seasonality Processing 
Method 

1 Gross Domestic 
Product (GDP) GDP GDP in million 

EURO Quarterly N/A 

2 Import Freight 
Volume Inwards 

Total Import of 
containers (TEU) 
in EU 

Quarterly N/A 

3 Export Freight 
Volume Outwards 

Total export of 
containers (TEU) 
in EU 

Quarterly N/A 

4 Labor Market 
Indicator 

Unemployme 
nt 

EU 
unemployment 
rate 

Quarterly N/A 

5 Producer Price 
Index (PPI) PPI EU PPI Quarterly N/A 

6 Rail Freight 
Volume Rail 

Rail freight 
volume by 
thousand tons 

Quarterly N/A 

7 Truck Freight 
Volume Road 

Road freight 
volume by 
thousand tons 

Quarterly N/A 

8 Exchange Rate of 
Currency Exchange EURO to USD 

exchange rate Quarterly N/A 

9 Consumer Price 
Index (CPI) CPI EU CPI Monthly 

Take the 
average value 
of the three 
months 

10 Fuel Price Oil 

Global price of 
average 
petroleum spot 
price 

Quarterly N/A 

11 Interest Rate Interest 

The Economic 
and Monetary 
Union 
convergence 
criterion bond 
yields 

Quarterly N/A 

12 Water Level Water 
Water level of the 
Rhine near 
Düsseldorf 

Monthly 

Take the 
average value 
of the three 
months 
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4.4 Methodology 

From the literature review, several models exist that can perform forecasting without relying on 

the target's historical data. While it is apparently a standard approach to compare multiple models 

for forecasting CTV, to the best of our knowledge, ours is the first study that aims to forecast   

inland waterway transportation CTV without using historical traffic volume data. Although the 

models reviewed are generally reported to perform well in their specific contexts, it is worth noting 

that forecasting for inland waterway transportation may differ from forecasting for seaports due to 

limited data availability. Therefore, this research seeks to evaluate and compare these popular 

models to identify the most accurate approach to forecast inland waterway transportation container 

traffic. In this section, we describe the models, illustrate the implementation of these models, and 

introduce the metrics used for assessing their performance. 

4.4.1 Prediction Models 

Ridge Regression 

Ridge regression (RR) (Pan, et al., 2021) is built on the foundation of linear regression. By 

incorporating a regularization component into the cost function, it is particularly useful for 

handling multicollinearity and preventing overfitting. As shown in equation (3), we have the linear 

regression model: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 𝑥𝑥𝑖𝑖1 + 𝛽𝛽2 𝑥𝑥𝑖𝑖2 + ⋯ + 𝛽𝛽𝑝𝑝 𝑥𝑥𝑖𝑖𝑝𝑝 + 𝜖𝜖 𝑖𝑖 (3) 

where yi is the ith observation of the target variable, xij is the value of the jth feature for the ith 

observation, βj is the coefficient for the jth feature, and ϵi is the random error term for the ith 

observation. The objective function of the linear regression is written as following: 

�̂�𝛽 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ( 1 

2𝑛𝑛 
∑ (𝑦𝑦𝑖𝑖 − (𝛽𝛽0 + 𝛽𝛽1 𝑥𝑥𝑖𝑖1 + 𝛽𝛽2 𝑥𝑥𝑖𝑖2 + ⋯ + 𝛽𝛽𝑝𝑝 𝑥𝑥𝑖𝑖𝑝𝑝 ))2 )𝑛𝑛
𝑖𝑖 =1 (4) 

where n is the number of observations. However, the cost function in RR is modified to include a 

regularization term as follows: 

𝛽𝛽𝑅𝑅𝑅𝑅 
� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ( 1 

2𝑛𝑛 
∑ (𝑦𝑦𝑖𝑖 − (𝛽𝛽0 + 𝛽𝛽1 𝑥𝑥𝑖𝑖1 + 𝛽𝛽2 𝑥𝑥𝑖𝑖2 + ⋯ + 𝛽𝛽𝑝𝑝 𝑥𝑥𝑖𝑖𝑝𝑝 ))2 + 𝜆𝜆 ∑ 𝛽𝛽𝑗𝑗2

𝑝𝑝 
𝑗𝑗 =0 )𝑛𝑛

𝑖𝑖 =1 (5) 
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where λ is the regularization parameter to control the strength of the regularization term, 𝜆𝜆 ∑ 𝛽𝛽𝑗𝑗2
𝑝𝑝
𝑗𝑗=0 

serves as a penalty term to discourage the overly large coefficients. A larger λ provides stronger 

regularization which produces a simpler model while a lower λ leads to a similar model compared 

to the basic linear regression model. As a result, RR is a technique which addresses 

multicollinearity by regularizing the coefficient estimates towards zero which increases the 

interpretability and stability of the regression model. 

Support Vector Regression 

Support vector regression (SVM) (Fan et al., 2021) can also be used as a regression model. Given 

a set of training data {(x1, y1), (x2, y2), …, (xn, yn)}, where xi ∈ ℝd, and yi ∈ ℝ, the SVM works to 

find the following function f(x) to approximate y: 

𝑓𝑓 (𝑥𝑥 ) = < 𝑤𝑤 , 𝑥𝑥 > + 𝑏𝑏 (6) 

where w is the weight vector, and b is the bias term. The objective of SVM is to minimize the 

following function with the subject to the associated constraints: 

  𝑀𝑀𝑎𝑎𝑎𝑎 
1 

2 
‖𝑤𝑤 ‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖 ∗ )𝑛𝑛

𝑖𝑖 =1 (7) 

  𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠 𝑡𝑡 �
𝑦𝑦𝑖𝑖 − < 𝑤𝑤 , 𝑥𝑥𝑖𝑖 > − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 
− 𝑦𝑦𝑖𝑖 + < 𝑤𝑤 , 𝑥𝑥𝑖𝑖 > + 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 ∗ 

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 ∗ ≥ 0 
(8) 

where ||w||2 is the square of the Euclidean norm of w, ε defines the width of the insensitive zone in 

which the predicted value has a zero loss, ξi and ξi
* are slack variables introduced for the infeasible 

cases where predicted values fall outside of the ε-tube, C is the regularization parameter which 

controls the trade-off between penalties on slack variables and the complexity of the model.   

Long Short-Term Memory Neural Networks 

Long short-term memory (LSTM) (Li et al., 2022) neural networks are one type of recurrent neural 

networks (RNN), specially designed for capturing long-range dependencies in time-series data and 

thus is popular used in time series forecasting (Yang et al., 2021). This makes the LSTM model 

effectively combat the vanishing gradient problem and capture both the long- and short-term 
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dependencies in time series data. As a result, it is efficient to be implemented to understand the 

temporal characteristics and achieve high accuracy in time series forecasting. 

CNN + LSTM 

The Convolutional Neural Network (CNN) + LSTM model is proposed by Yang and Chang (2020) 

to forecast container throughput demand. The central concept of this hybrid model is to leverage 

the strengths of both CNN and LSTM architectures. While CNN excels at identifying crucial 

spatial features, it struggles with capturing long-term temporal dependencies. This limitation is 

precisely what LSTM can address. The combined model is particularly advantageous for time-

series forecasting, where complex temporal sequences and spatial patterns frequently coexist.  

Back-Propagation Neural Network 

Back-propagation neural network (BPNN) (Tang et al., 2019; Ding et al., 2019) is a commonly 

utilized neural network architecture, often employed for comparative analysis against other 

methodologies or within hybrid models, particularly in the domain of time series forecasting like 

container forecasting and others. Characterized by its multilayer feedforward structure, the BPNN 

is distinguished by its training via the backpropagation algorithm, which facilitates iterative model 

refinement. This iterative process adjusts the model by comparing the predicted outputs to the 

actual inputs, enabling the network to learn from its errors. 

Random Forest 

The random forest (RF) algorithm (Kharfan et al., 2021) is the ensemble learning method based 

on the concept of decision trees. Each individual decision tree is trained on a random bootstrap 

sample with replacement. At each split, only a random subset of features is taken instead of 

considering all features in decision tree. The final prediction is made as follows: 

  𝑦𝑦�𝑅𝑅𝑅𝑅 (𝑋𝑋 ) = 1 

𝑛𝑛 
∑ 𝑦𝑦�𝑡𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡𝑖𝑖 (𝑋𝑋)𝑛𝑛
𝑖𝑖 =1 (9) 

Where 𝑦𝑦�𝑡𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡 𝑖𝑖 (𝑋𝑋) is the prediction made by the ith tree. In addition, the Out-of-Bag Error (OOB) is 

used to estimate the model’s performance. It is calculated by using the unincluded data points in 

the bootstrap samples of each tree. The equation below gives the calculation of OBB error: 
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𝑂𝑂𝑂𝑂𝑂𝑂 𝑠𝑠𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 = 1 

𝑛𝑛 
∑ 𝐿𝐿 (𝑦𝑦𝑖𝑖 , 𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 )
𝑛𝑛
𝑖𝑖 =1 (10) 

Where 𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 is the aggregated prediction for the ith data point using its OBB trees, yi is the actual 

value, and L is the loss function. Typically, the loss function is Mean Square Error (MSE). 

XGBoost eXtreme Gradient Boosting 

eXtreme Gradient Boosting (XGBoost) (Jin et al., 2023) is another tree-based algorithm with the 

implementation of gradient boosting. It operates by building multiple individual trees in a 

sequential order where each tree corrects the errors made by its predecessor. Each tree in the model 

is a weaker learner, and it learns from the residuals of all previous trees, the final prediction of the 

model is the sum of results from all trees: 

  𝑦𝑦�𝑖𝑖 = ∑ 𝑓𝑓𝑘𝑘 (𝑥𝑥𝑖𝑖 )𝐾𝐾
𝑘𝑘 =1 (11) 

Where fk represents an individual tree, 𝑓𝑓𝑘𝑘 (𝑥𝑥𝑖𝑖 ) is the prediction from tree k, 𝑦𝑦�𝑖𝑖 is the forecasted 

value of ith instance xi. The objective function of XGBoost is: 

  𝑂𝑂𝑏𝑏𝑠𝑠(Θ) = 𝐿𝐿 (Θ) + Ω(Θ) (12) 

Where 𝐿𝐿 (Θ) is the loss function (like MSE), and Ω(Θ) is the regularization term used to prevent 

overfitting of the model. The model is trained by iterations. In iteration t, 𝑦𝑦�𝑖𝑖 (𝑡𝑡 ) is calculated below: 

  𝑦𝑦� 𝑖𝑖 
(𝑡𝑡 ) = 𝑦𝑦� 𝑖𝑖 

(𝑡𝑡 −1) + 𝑓𝑓𝑡𝑡 (𝑥𝑥𝑖𝑖 ) (13) 

In each iteration, XGBoost calculates the first and second-order derivatives (gi, hi) of the loss 

function with respect to the prediction 𝑦𝑦�𝑖𝑖 as follows: 

  � 
𝑎𝑎𝑖𝑖 = 𝜕𝜕𝑦𝑦 � 𝑖𝑖 𝑙𝑙 (𝑦𝑦𝑖𝑖 , 𝑦𝑦�𝑖𝑖 ) 
ℎ𝑖𝑖 = 𝜕𝜕𝑦𝑦� 𝑖𝑖 

2 𝑙𝑙 (𝑦𝑦𝑖𝑖 , 𝑦𝑦�𝑖𝑖 ) (14) 

By using a Taylor series up to the second order would give us the following approximation to 

minimize the objective function at iteration t as: 

  𝑂𝑂𝑏𝑏𝑠𝑠 (𝑡𝑡 ) ≈ ∑ �𝑙𝑙�𝑦𝑦𝑖𝑖 , 𝑦𝑦�𝑖𝑖 
(𝑡𝑡 −1)� + 𝑎𝑎𝑖𝑖 𝑓𝑓𝑡𝑡 (𝑥𝑥𝑖𝑖 ) + 1 

2 
ℎ𝑖𝑖 𝑓𝑓𝑡𝑡 2 (𝑥𝑥𝑖𝑖 )�𝑛𝑛

𝑖𝑖 =1 + Ω(𝑓𝑓𝑡𝑡 ) (15) 
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This approach uses both first and second order derivatives and the Taylor expansion enables 

XGBoost to generate the optimal trees efficiently in regression task. 

4.4.2 Performance Metrics 

In this study, we employ three widely recognized metrics to evaluate and compare the forecasting 

results. mean absolute percentage error (MAPE) is utilized to measure relative errors, offering a 

percentage-based, intuitive interpretation of the forecasting accuracy. The Mean Absolute Error 

(MAE) is applied to assess the average magnitude of forecasting errors, providing a direct measure 

of the error scale. Additionally, the Root Mean Squared Error (RMSE) is adopted, particularly for 

its effectiveness in highlighting large errors, which may be especially critical to avoid in CTV 

forecasting due to their significant impacts. The equations for these metrics are as follows: 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100% 

𝑛𝑛 
∑ � 𝑦𝑦𝑖𝑖 −𝑦𝑦� 𝑖𝑖 

𝑦𝑦𝑖𝑖 
�𝑛𝑛

𝑖𝑖 =1 (16) 

  𝑀𝑀𝑀𝑀𝑀𝑀 = 1 

𝑛𝑛 
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 |𝑛𝑛
𝑖𝑖 =1 (17) 

  𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = � 
1 

𝑛𝑛 
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 )2𝑛𝑛 
𝑖𝑖 =1 (18) 

where 𝑦𝑦𝑖𝑖 represents the actual value of i, 𝑦𝑦�𝑖𝑖 presents the predicted value of i, and n is the total 

number of observations. 

4.4.3 Prediction Process 

This study's forecasting methodologies are depicted in a flowchart presented in Exhibit 15. 

Initially, the models are trained, and predictions are made using all twelve features. However, 

given the potential data constraints in regions beyond the EU, an important phase of feature 

selection is undertaken. This phase assesses the models' efficiency when operating with a reduced 

feature set. This assessment is vital, particularly for stakeholders in regional inland waterway 

systems who may not have access to the complete set of twelve features but require accurate CTV 

forecasts. Through this exploration, the study aims to enhance the models' adaptability to various 

geographic and data contexts, a critical factor for their broader application in diverse environments. 
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In this study, we employ a combination of RF and Recursive Feature Elimination (RFE) for feature 

selection in each model. The choice of RF is driven by its robustness in handling complex, non-

linear relationships among the twelve features, which are not straightforward in our case. RF's 

ensemble approach effectively reduces overfitting risks, thereby enhancing the feature selection 

process. Initially, RF is used to assess and rank the importance of features. Subsequently, RFE is 

applied to systematically eliminate the least important features, continuing this process until we 

reach the predetermined number of features for our analysis. Because of its robustness and 

versatility, this integrated RF-RFE strategy is applied consistently across all seven models in this 

study. 

Exhibit 15. Flowchart of model implementation 

Furthermore, we do not test every possible number of features from twelve down to one. Instead, 

subsets of seven and five features are selected to evaluate the models’ performance, providing a 

representative and general assessment with a reduced number of input features. Feature selection 



38 

was performed on the entire dataset prior to its division into training and testing sets. This method 

ensures that the testing data does not influence the feature selection process, maintaining strict 

adherence to the historical chronological order and ensuring that no future information impacts 

decisions made on past data. The training set consists of data from 56 quarters, spanning from 

2007 to 2020. The testing set encompasses data from the following 8 quarters, covering the period 

from 2021 to 2022. We employ a 0.875:0.125 training-to-testing set ratio for short-term CTV 

forecasting. Given the limited amount of quarterly data available, this ratio allows the models to 

learn more stable patterns from historical data, thereby enhancing the accuracy of short-term 

predictions. 

Next, as outlined in Exhibit 15, each model undergoes training and validation processes. 

Predictions are then made using the test data. The outcomes of these predictions are assessed using 

the previously mentioned metrics by comparing them with the actual historical CTV numbers. If 

necessary, an iterative refinement loop is initiated, focusing on enhancing hyperparameter tuning 

and data engineering to increase prediction accuracy. This cycle continues until each model 

reaches its optimal performance with the selected number of features. This iterative process is 

repeated for each of the seven models under study, ensuring a thorough exploration and 

optimization of all models. 

We chose to code and run the seven models in Python 3.10 on Google Colab with the default 

computing resources provided by the free version. TPU (Tensor Processing Unit) has been chosen 

as the hardware accelerator for our Colab running environment. This setup is easily accessible, 

convenient, and efficient to conduct our forecasting study. 

4.5 Application and Results 

4.5.1 Prediction Results Using Twelve Features 

Exhibits 16 and 17 present the forecasting results using all twelve features as predictors. The RR 

model demonstrated moderate accuracy with a MAPE of 2.97%. Although it provided a reasonable 

level of precision, its relatively higher RMSE (100,497) and MAE (77,592) indicated a 

susceptibility to larger errors in specific instances, which might be due to its inability to fully 

capture the complex interactions among the twelve features. In contrast, the SVM model 
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underperformed compared to RR, with higher error values across all metrics (MAPE of 3.90%, 

RMSE of 137,435, and MAE of 104,300). This suggests that SVM's capacity to model the 

complexities inherent in the twelve features for accurately predicting TEU volume is somewhat 

limited.   

Notably, the LSTM network showed an improvement over RR in terms of RMSE (98,926), albeit 

with a slightly higher MAPE (3.06%) and MAE (80,534). This improvement signifies LSTM's 

enhanced ability in capturing temporal dependencies among the features, an essential aspect of 

CTV forecasting. The hybrid CNN+LSTM model emerged as the most accurate, significantly 

outperforming all other models. It achieved the lowest MAPE (1.08%), RMSE (35,451), and MAE 

(28,757), demonstrating exceptional proficiency in integrating and modeling both spatial and 

temporal aspects of the twelve-feature dataset. This suggests that the combination of convolutional 

and recurrent neural network architectures is particularly well-suited for this task while using the 

twelve features provided in this study. In addition, the BPNN showed promising results, with better 

accuracy than RR, SVM, and LSTM but not as high as CNN+LSTM. Its MAPE of 1.69%, RMSE 

of 54,529, and MAE of 43,772 indicate its capability as a viable alternative, especially in scenarios 

where the complexity of CNN+LSTM might be a limiting factor.   

The performance of the RF model was comparatively lower, as indicated by its higher error metrics 

(MAPE of 3.68%, RMSE of 138,699, and MAE of 99,376). This performance suggests that the 

ensemble method, typically robust in various applications, may not be as effective in capturing the 

nuanced patterns present when utilizing all twelve features for inland waterway CTV forecasting. 

Finally, the XGBoost model demonstrated high accuracy, second only to the CNN+LSTM model. 

With a MAPE of 1.21%, RMSE of 39,560, and MAE of 31,227, XGBoost has proved to be highly 

effective, indicating its strong capability to handle the complexity and non-linearity associated 

with the twelve features. In summary, all tested models demonstrated notable accuracy, with each 

achieving MAPE scores below 4%. However, there was a significant variation in performance as 

evidenced by the range in RMSE (from 35,451 to 138,699) and MAE (from 28,757 to 104,300). 

Among these, the CNN+LSTM model stood out as the most proficient, distinctly outperforming 

the others across all three key metrics. Its superior performance underscores the model’s 

effectiveness and advanced capability in managing the complexities associated with the twelve 

features used, thereby providing highly accurate predictions. 
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Exhibit 16. Forecasting results using twelve features. 

Model MAPE RMSE MAE 
RR 2.97% 100,497 77,592 
SVM 3.90% 137,435 104,300 
LSTM 3.06% 98,926 80,534 
CNN+LSTM 1.08% 35,451 28,757 
BPNN 1.69% 54,529 43,772 
RF 3.68% 138,699 99,376 
XGBoost 1.21% 39,560 31,227 

Exhibit 17. Comparison of Forecasting Models Using Twelve Features 

4.5.2 Prediction Results Using Seven Features 

Exhibits 18 and 19 present the results when a reduced set of seven features are used to train the 

model and perform predictions. Exhibit 18 also presents the optimal features selection results. If a 

feature engineering approach is used, the associated method is also listed in Exhibit 18. 

The RR model, utilizing features such as GDP, Inwards, Outwards, Unemployment, Road, 

Exchange, and Interest, recorded a MAPE of 4.50%, the highest among the tested models. This, 

combined with its RMSE of 130,621 and MAE of 118,851, suggested its limited capacity in 

effectively capturing the relationships within the reduced feature set, making RR the least 

favorable performer in this assessment. Conversely, the SVM model exhibited a substantial 

enhancement in performance, particularly noteworthy given its inclusion of a temporal feature 

extraction approach. By incorporating the year component alongside the seven selected features, 
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the SVM achieved a MAPE of 2.27%, an RMSE of 89,975, and a MAE of 60,338. This marked 

improvement accentuates the pivotal role of temporal dynamics in CTV forecasting and SVM's 

proficiency in exploiting such additional information. The LSTM network, while not benefiting 

from any additional feature engineering, still showed commendable results. With a MAPE of 

2.55%, RMSE of 88,163, and MAE of 65,747, LSTM's inherent strength in capturing temporal 

patterns was evident, albeit slightly overshadowed by the SVM's enhanced feature set.   

Standing out was the CNN+LSTM model. Even without the aid of supplementary feature 

engineering, it registered the lowest MAPE (1.92%), RMSE (73,827), and MAE (50,158), 

distinctly outclassing its counterparts. This once again highlights the CNN+LSTM model's robust 

capability in seamlessly integrating and interpreting both spatial and temporal aspects of the seven 

features used. On the other hand, the BPNN also demonstrated a strong performance, albeit not as 

pronounced as the CNN+LSTM. With a MAPE of 2.09%, RMSE of 87,644, and MAE of 54,292, 

BPNN offered a balanced performance profile, positioning itself as a viable option in scenarios 

where the complexity of CNN+LSTM might be a constraint. 

In contrast, the RF model, though robust in various applications, registered moderate performance 

in this context, indicated by a MAPE of 2.97%, RMSE of 99,943, and MAE of 73,713. This 

outcome suggests that RF's effectiveness is limited when features are reduced from twelve to 

seven. Lastly, the XGBoost model, while outperforming the RR and RF, did not quite reach the 

higher accuracy levels of other models. With a MAPE of 2.82%, RMSE of 93,399, and MAE of 

73,698, it demonstrated reasonable proficiency but indicated potential limitations in harnessing the 

full predictive power of the seven-feature set. 

In conclusion, the CNN+LSTM model's exceptional performance highlights its advanced 

capabilities in dealing with limited data sets. While the improvement seen in the SVM model with 

temporal feature extraction underscores the value of incorporating time-related elements in the 

forecasting process. Furthermore, only SVM benefited from feature engineering. This suggests 

that for most models, the information contained in the seven features is sufficient to produce 

predictions with relatively high accuracy. 
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Exhibit 18. Forecasting results using seven features. 

Model Feature Selected Feature Engineering 
Approach 

MAPE RMSE MAE 

RR GDP, Inwards, Outwards, 
Unemployment, Road, 
Exchange, Interest 

N/A 4.50% 130,621 118,851 

SVM GDP, Inwards, Outwards, 
Unemployment, Road, 
Exchange, Interest 

Temporal Feature 
Extraction Applied. 
The year component 
from datetime data is 
used in addition to 
the seven features. 

2.27% 89,975 60,338 

LSTM GDP, Inwards, Outwards, 
Unemployment, Rail, 
Road, Interest 

N/A 2.55% 88,163 65,747 

CNN+LS 
TM 

GDP, Inwards, Outwards, 
Unemployment, Rail, 
Road, Interest 

N/A 1.92% 73,827 50,158 

BPNN GDP, Inwards, Outwards, 
Unemployment, Rail, 
Road, Interest 

N/A 2.09% 87,644 54,292 

RF GDP, Inwards, Outwards, 
Unemployment, Rail, 
Road, Interest 

N/A 2.97% 99,943 73,713 

XGBoost GDP, Inwards, Outwards, 
Unemployment, Rail, 
Road, Exchange 

N/A 2.82% 93,399 73,698 

Exhibit 19. Comparison of Forecasting Models Using Seven Features 
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4.5.2 Prediction Results Using Five Features 

The results of using a further narrowed selection of five features are shown in Exhibits 20 and 21. 

The optimal selected features and the feature engineering approach are presented in Exhibit 20 for 

each model.   

The RR model, utilizing GDP, Inwards, Outwards, Exchange, and Interest as features, recorded a 

MAPE of 4.85%, alongside an RMSE of 168,066 and an MAE of 118,878. This outcome indicates 

RR's limited capability in handling the further reduced feature set effectively. Interestingly, the 

SVM model, despite the incorporation of temporal feature extraction (specifically, the year 

component), did not show an improvement over RR. In fact, it registered a slightly higher MAPE 

of 5.17%, an RMSE of 174,479, and an MAE of 127,563. This suggests that the addition of 

temporal data in the SVM did not compensate for the challenges posed by only using five features 

for prediction. But without the feature engineering approach, the potential results would be worse. 

The LSTM network, even without the benefit of additional feature engineering, demonstrated a 

significantly better performance. It achieved a MAPE of 2.50%, an RMSE of 99,474, and an MAE 

of 62,583. This highlights LSTM's inherent strength in extracting valuable insights from time-

series data, even with this further reduced set of only five features. The CNN+LSTM model once 

again emerged as the top performer. With a MAPE of 1.91%, RMSE of 91,190, and MAE of 

50,720, it outstripped all other models. This result reinforces the model's adeptness at handling 

both spatial and temporal dimensions in this specific task, even under the constraint of fewer 

features. In addition, the BPNN, using GDP, Inwards, Outwards, Unemployment, and Road as 

features, also showed a commendable performance with a MAPE of 2.53%, but with a notably 

lower RMSE of 64,935 and a higher MAE of 94,780. This indicates BPNN's effectiveness in 

certain aspects of the forecasting task, although it did not uniformly excel across all metrics. 

The RF model exhibited the least favorable results, with the highest MAPE of 6.06%, an RMSE 

of 189,001, and an MAE of 161,757. This underscores the model's limitations in effectively 

dealing with a smaller set of features. Lastly, the XGBoost model, despite incorporating both 

temporal feature extraction and lag features, achieved a MAPE of 2.68%, an RMSE of 92,433, and 

an MAE of 69,553. While it performed better than RF, RR, and SVM, it did not reach the accuracy 

levels of LSTM or CNN+LSTM. This outcome suggests that while the additional features 
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enhanced XGBoost's performance, there remains a gap in its ability to fully utilize the limited 

feature set as effectively as the LSTM or CNN+LSTM models. 

In conclusion, the results highlight the varying capabilities of different forecasting models when 

constrained by predicting only using five out of twelve features. The CNN+LSTM model's 

outstanding performance underscores its robustness and adaptability, confirming its suitability for 

complex forecasting tasks with limited data input. The LSTM model also showed significant 

potential in this context. In contrast, traditional models like RR and RF, and even advanced models 

like SVM and XGBoost, faced challenges in effectively leveraging this further reduced feature set 

for accurately produce the predictions. 

Exhibit 20. Forecasting results using five features. 

Model Feature Selected Feature Engineering 
Approach 

MAPE RMSE MAE 

RR GDP, Inwards, 
Outwards, 
Exchange, Interest 

N/A 4.85% 168,06 
6 

118,87 
8 

SVM GDP, Inwards, 
Outwards, 
Exchange, Interest 

Temporal Feature 
Extraction applied. The 
year component from 
datetime data is used. 

5.17% 174,47 
9 

127,56 
3 

LSTM GDP, Inwards, 
Outwards, 
Unemployment, 
Interest 

N/A 2.50% 99,474 62,583 

CNN+LST 
M 

GDP, Inwards, 
Outwards, 
Unemployment, 
Interest 

N/A 1.91% 91,190 50,720 

BPNN GDP, Inwards, 
Outwards, 
Unemployment, 
Road 

N/A 2.53% 64,935 94,780 

RF GDP, Inwards, 
Outwards, 
Unemployment, 
Road 

N/A 6.06% 189,00 
1 

161,75 
7 
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XGBoost GDP, Inwards, 
Outwards, 
Unemployment, 
Road 

Temporal Feature 
Extraction applied. The 
year component from 
datetime data is used. 
Lag Features are 
created. A Lag-4 
feature is used. 

2.68% 92,433 69,553 

Exhibit 21. Comparison of Forecasting Models Using Five Features 

4.5.2 Overall Prediction Results 

As we understand, the availability of all twelve features may be limited in other regions where 

stakeholders also aim to forecast their COB volume in the near term. Therefore, it is essential to 

assess the impact on model performance when a reduced number of features are utilized. 

Investigating how model performance is sensitive to the number of features used can also highlight 

the importance of feature selection in predictive analytics. Exhibits 22, 23, and 24 individually 

illustrate the model performance across various models when a differing number of features are 

employed. We observe that the MAPE, RMSE, and MAE scores fluctuate across different models 

as the number of features is reduced from twelve to seven and then to five. 
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Exhibit 22. MAPE (%) by Model by Number of Features 

Exhibit 23. RMSE by Model by Number of Features 
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Exhibit 24. MAE by Model by Number of Features 

4.6 Summary 

This research provides a novel approach in predicting CTV in inland waterway transportation, with 

a distinct focus on leveraging economic indicators in the absence of historical CTV data for 

forecasting purposes. In this study, seven machine learning and deep learning models were 

employed and compared on their prediction ability, using sets of twelve, seven, and five features 

respectively. This comprehensive approach yielded promising results, with each model’s 

performance offering valuable insights. Among these, the CNN+LSTM model emerged as the 

most effective, exhibiting superior performance across all feature sets. Its adeptness in integrating 

spatial and temporal data underscores its robustness in complex forecasting scenarios. 

Additionally, models such as BPNN and LSTM also delivered noteworthy outcomes, presenting 

themselves as practical alternatives in varying computational or data situations. It was observed 

that the number of features utilized plays a crucial role in optimizing the performance of different 

models. Thus, feature selection strategies should be customized when different models are chosen. 

The results proved that it is completely feasible to achieve high accuracy in inland waterway 
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transportation CTV forecasting. From our study, the most effective strategy involves utilizing the 

CNN+LSTM model with all twelve features to optimize COB volume forecasting accuracy. 

A key contribution of this study is the demonstration that highly accurate predictions of inland 

waterway transportation CTV are achievable using exclusively economic indicators, without 

relying on historical CTV data. This approach is particularly crucial for regions where COB 

transportation is in its early development stages or where historical data is unavailable. This 

breakthrough provides maritime and intermodal transportation stakeholders with a simplified, 

practical, yet effective method to forecast near-term COB volume based on economic indicators 

alone. 

Consequently, the ability to forecast CTV with high accuracy greatly enriches the tool kit for inland 

waterway container volume predictive analytics. This advancement enables more strategic 

decision-making in areas such as port infrastructure investment, equipment procurement, and the 

strategic development of COB transportation. Its relevance is particularly pronounced in the realm 

of intermodal transportation and freight logistics, making a significant contribution to the 

advancement and strategic planning of these systems. As a result, our study could help countries 

across the world, such as the U.S., to acquire a fairly accurate CTV forecasting to aid them 

generating suitable COB development plans accordingly. We hope more freight logistics and 

intermodal transportation stakeholders in different regions of the globe can benefit from this 

practical predication method to generate suitable and competitive business strategies to ensure 

smooth COB development. 
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5.0 Conclusions 

The outcomes of this research contribute to current COB transportation and maritime 

transportation literature, support maritime transportation decision-makers, assess the feasibility 

of launching COB transportation projects at an individual U.S. inland waterway port/terminal, 

and help form predictive port operation strategies and facility investment plans to respond to 

predicted COB throughput volume. 

Our earlier work describes the status of COB research, summarizes information related to 

various aspects of COB research among different regions in the world, and provides a literature 

database for future COB information inquiry. The key findings, such as regions with the most 

developed COB transportation, success factors for developing COB, and top research topics, 

indicated a pattern could be learned from to develop successful COB transportation. This 

research helps lay a foundation and motivate future growth in both studying and developing 

COB transportation. This work was published in the journal of Maritime Economics and 

Logistics (Bu and Nachtmann, 2021).   

The Value-Focused Thinking (Keeney, 1992) based COB Readiness Assessment (COBRA) 

scorecard provided a comprehensive and practical tool to enable maritime transportation 

stakeholders to evaluate the feasibility of developing COB transportation at an inland waterway 

port/terminal with available qualitative and quantitative input data. The COBRA guides the 

feasibility assessment process with a focus on decision-makers and stakeholders’ value to enable 

decision-makers to understand intuitive and hidden aspects of COB development to identify 

more opportunities and limitations and to review port/terminal conditions in an all-inclusive 

point of view. This research would help stakeholders to generate well-prepared, fully considered 

COB development plans and strategies to obtain a better chance in developing successful COB 

transportation in the U.S. inland waterway system. 

This project implemented machine learning algorithms to analyze existing COB transportation 

data from Northwestern Europe. The results of this research predict future COB traffic volume 

via major EU seaports to help connected inland waterway ports calculate upcoming container 

throughput volume. This can assist port decision-makers in developing their facility investment 

plans, layout designs, and operation strategies to cope with the upcoming COB traffic volume to 
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increase operation efficiency, mitigate risk of defective equipment or inventory capacity, and 

reduce the total barge delay time at berth. 
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