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Abstract 

Natural disasters such as a hurricane can cause great damages to the 
transportation networks and significantly affect the evacuation trip operations. An 
accurate understanding and measurement of the network vulnerability can 
enhance the evacuees’ preparedness and responding capabilities during an 
emergency incident. This study presents a game theory based approach to the 
analysis of the network vulnerability under a hurricane evacuation. A game is 
constructed between a router, who is committed to seek the minimum-cost path 
for the evacuation travelers, and a tester, who wants to maximize the travel cost 
by disturbing the links. In the game process, the distribution of evacuation demand 
is elastic because the probability of selecting an evacuation destination is 
determined by the path risk and travel cost. In addition, the congestion effect is 
considered, and a solution strategy based on the method of successive averages 
(MSA) is adopted. Over a sample network, the proposed method is compared with 
other three methods for the network vulnerability analyses. Furthermore, the 
method is applied to the vulnerability analysis of a large scale network in Mississippi 
Gulf coast area. 

  



4 
  

Table of Contents 

1 Project Description ................................................................................................ 5 

2   Methodological Approach ................................................................................... 9 

2.1 Game-Theoretic Model ................................................................................. 10 

2.2 Solution Methodology .................................................................................. 12 

3   Results/Findings ................................................................................................ 14 

3.1 Computation Results ..................................................................................... 14 

3.2 Comparison of Game Models ....................................................................... 17 

3.3 Impacts on Evacuation Routing..................................................................... 18 

4   Impacts/Benefits of Implementation ................................................................ 20 

5   Recommendations and Conclusions ................................................................. 23 

References ............................................................................................................. 25 

 

 

  



5 
  

1 Project Description 

The measurement of transportation network vulnerability captures the network 
weaknesses or susceptibility to threats affected operational performance, and 
plays an important role in transportation networks analysis (1, 2). Understanding 
the specific significance of transportation network vulnerability can improve the 
capability of a transportation agency when dealing with the impacts of interrupting 
threats in network planning, design, and management. In addition, it is useful to 
enhance the traveler’s ability to respond to disastrous events and emergency 
incidents (3). As a result, various studies targeting on vulnerability assessment 
under conventional and disastrous conditions were conducted in recent years (2, 
3, 4, 5). Typically in such a study, the origin-destination travel demand is assumed 
to be known, and the vulnerability assessment results are mainly dependent on link 
travel time, networks topological structure, and the adopted measurement 
methods. 
       The presence of a disastrous condition plays an important role in the modeling 
of trip distribution and then the vulnerability measurement. In the traffic 
assignment at a conventional traffic condition, the trip demands can be allocated 
to destinations proportionally to the populations of the possible destinations. In 
contrast, under an emergency evacuation situation, the evacuation trip demand 
would be allocated after an aggregating analysis of the travel distance, and link risk, 
in addition to the consideration of the sheltering and handling capacities at the 
destinations (6). Specifically, evacuees make decisions on trip destinations based 
on the assessment of the risk and cost, which means that the modeling methods of 
travel demand and trip distribution between a conventional traffic operation and 
an emergency evacuation are quite different. This research study will address these 
differences in vulnerability measurement methodology by introducing an 
evacuation destination selection mechanism.  
       Game-theory based risk modeling methods have been adopted recently in 
network vulnerability studies (7, 8, 9, 10). In the game theoretic model a game is 
played between a benevolent router and malevolent network tester to find link 
failure probabilities. The link failure probabilities are used to indicate the network 
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vulnerability and the links with the highest failure probabilities are the most critical 
links in the network. The information on the link failure probabilities can help the 
travelers determine trip and route strategies accordingly and achieve a more 
reliable system-level outcome (9, 10). Therefore, the primary objective of this study 
is to develop a game-theoretic approach to the analysis and measurement of 
networks vulnerability under hurricane evacuation. 
       A lot of research efforts in the measurement of vulnerability performance of a 
transportation network have been conducted. Berdica had a comprehensive 
literature review and investigation on how the road vulnerability related problems 
were addressed in the past, and what the solutions to the problems should be in 
nowadays and for the future (1). However, this study only reviewed the 
vulnerability research at a qualitative level and the proposed solution strategies 
remained in conceptualization. As to quantitative approaches, numerous studies 
were undertaken extensively for the measurement of network vulnerability (2, 3, 
5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26). 
      The methods proposed in these studies generally fall into the following three 
types. Firstly, the risk measurement models were built based on network topology. 
When random incidents or failures occur on the network, the topology indexes 
would vary generating representing information that leads to the estimates of 
link/network vulnerability. Under this type of modeling, various estimate models 
including the networks minimum cuts or mincuts, link importance, and link using 
rate were introduced to reflect the level of vulnerability of a network. Tu et al. used 
the networks mincuts (11) and Jenelius et al. derived the link importance to 
measure vulnerability respectively (2). Hu et al. tested the urban road networks in 
four cities using the network topology analysis (15), and Han et al. designed a 
variety of simulation scenarios for network interruption to assess network 
vulnerability (16). Secondly, there are quite a few vulnerability studies based on 
networks accessibility, especially using the accessibility index initially developed by 
Hansen (20). Typically, accessibility refers to the ease of reaching opportunities for 
activities and services and can be used to assess the performance of a 
transportation network. Chen et al. used network-based accessibility measures to 
assess vulnerability of degradable transportation networks. The network-based 
accessibility measures quantified the consequence of one or more link failures in 
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terms of network travel time or travel cost increase plus the effect of behavioral 
responses of users due to the failure in the network (18). Thirdly, the game 
theoretic approach has been successfully applied to network vulnerability studies 
recently. The method hypothesizes a ‘game’ situation in which a router constantly 
seeks the lowest-cost route, and a tester has the power to fail a critical road link to 
cause the most expensive travel cost to the router (8). Bell et al reviewed the 
application, mathematical formulation and solution algorithm of game model in 
road vulnerability (25). Generally a mixed optimization process is used in this 
method. Link-use probabilities is optimal for the router, and link-failure 
probabilities is optimal for the tester. Finding the equilibrium involved solving a 
maxi-min programming problem. When link costs are fixed (not traffic-dependent), 
the maxi-min problem can be recast as a linear programming problem. Where link 
costs are traffic-dependent (e.g., where queuing is a feature), the mixed strategy 
Nash equilibrium can be found by a numerical method of successive averages. To 
model the different characteristics of travel behavioral responses, a combined 
travel demand model is needed to estimate the long-term equilibrium network 
condition due to network disruptions. 

It would be obvious to state that the research methods based on network 
topology may only relate vulnerability measurement to network connectivity and 
topology but fail to provide a framework of procedures considering the travelers’ 
evacuation behavior and responses to interrupted network links or nodes under an 
emergency evacuation condition. In contrast, the methods using network 
accessibility consider both the consequence of a network failure in terms of 
increased travel cost and travel time and the effect of travelers’ behaviors and 
responses to an emergency situation. Therefore the network vulnerability analysis 
using the accessibility modeling method could be applied to a disastrous 
evacuation condition. Furthermore, compared with the accessibility modeling 
method, the game theoretic method not only well reflects the traveler’s behavior 
of constantly seeking the lowest travel cost/time in a ‘shortest path’ but it also 
captures the nature of the problem of identifying the critical links and quantifying 
the vulnerability of the network. The mixed optimization process nicely includes 
the seeking of both the shortest paths and the critical links in a ‘game’ problem. 
This study contributes to the emergency management research area by introducing 
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the game theoretic method to the network vulnerability analysis under an 
emergency evacuation condition, due to an assumed hurricane disaster in the Gulf 
coast area.  

There are two major questions that need to be addressed for a network at the 
Gulf coast under hurricane evacuation condition. The first question is how to 
describe the link risk, and the second one is how to predict the evacuation trip 
demand and process the trip distribution (6). After the disastrous 2005 hurricane 
Katrina, both the Federal Emergency Management Agency (FEMA) and the US Army 
Corps of Engineers (USACE) undertook intensive efforts to update coastal hazard 
information using specially developed methods, in which probabilities were used 
to present the link risk. Neidoroda et al. developed the flood elevation-frequency 
curves for a dense network of points throughout the Mississippi Gulf coast area, 
suggesting that the flood peak surge heights follow the Gauss distribution (27). 
Sohn also utilized the flood probability of a road link to represent the link risk, and 
conducted an analysis to assess the vulnerability of highway network links in 
Maryland in case of flood damage (22). 

Pel et al. reviewed the trip decisions on how and where the hurricane affected 
populations were evacuated and suggested to reveal the major decision factors by 
using both stated preferences in a survey and real observed data (6). Cheng 
developed a study to calibrate the friction factors for hurricane evacuation trip 
distribution. In the study the observed origin-destination matrix was reconstructed 
based on a survey data and trip distribution models were estimated to produce the 
best fitting to the origin-destination matrix, and the lengths of the evacuation trips 
showed statistical regularity (28). Therefore, in a later study the same data set was 
used to estimate two multinomial logit models (29). It was found that, as expected 
though, the parameters for travel cost and the probability that the destination 
choice was at risk by hurricane were negative, indicating that the destination with 
a larger cost and a higher risk is less likely to be chosen. A more significant 
contribution of Cheng’s research would be the proposed destination choice model 
which was used to present evacuation behaviors. With the destination choice 
model, the probability of choosing the destination from the evacuation area can be 
calculated by inputting the known values for the dependent variables. On the other 
hand, the destination choice model also provides an approach to searching for the 
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evacuation routes and therefore the evacuation trip demands for the chosen 
routes can be calculated through multiplying the choosing probabilities with the 
total evacuation traffic generation in a traffic analysis zone (TAZ).  

In almost all of the previous game theoretic models used for network 
vulnerability analyses, the route use rates are defined as the ratios of the traffic 
demands in the shortest paths to the total traffic demand (30), which are neither 
elastic nor affected by the risk of the incident such as a hurricane. In this study, a 
new game theoretic formulation with elastic constraint for network vulnerability is 
developed. Compared with previous studies, three newly elements have been 
adopted in the study. Firstly, drivers no longer make their route choice solely 
considering their own utility but rather based on the network ‘dispatcher’. 
Secondly, link risk and travel cost affect the route decision probability. Thirdly, the 
Bureau of Public Roads (BPR) function is used to consider the effect of traffic 
volume on the vulnerability of the network.  

The remainder of this project is organized as follows: In the following section 
game theoretic model is proposed, and the method of successive averages (MSA) 
is applied to solve the problem. Section 3 presents our sample network and 
summarizes preliminary computational results used to testify model performance. 
Based on these results, we apply the model and solution method to a realistic large-
scale evacuation network in Section 4, and we discuss benefits obtained via 
applying our modeling and solution approach. Conclusions are drawn in Section 5. 

2   Methodological Approach 

In this project, it is assumed that there are two opponents in a non-cooperative 
game with symmetric information: a router, who seeks the least-cost path to the 
chosen evacuation destination and assigns the evacuation demand in the path 
according to the choice probability, and an evil tester, who strives to maximize the 
trip cost to the router. The mixed strategies are adopted, which means that the use 
or failure of the network is determined by the shortest paths or the worst scenario 
probabilities. Elastic demand is assumed and traffic congestion effect is 
incorporated.  
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2.1 Game-Theoretic Model 

In order to describe the game model, the main decision variables are designed to 
have two parts that are the vector of link choice probabilities 𝐏𝐏, and the vector of 
link failure probabilities 𝐪𝐪. The notations used in the formulation of the problem 
are summarized in Table 1.  
 
 Notations 
 

Table 1 Summary of Notations 

𝐏𝐏 Vector of link choice probabilities;  𝑝𝑝𝑖𝑖 is probability of link i to be chosen by the 
network router 

𝐪𝐪 Vector of link failure probabilities; 𝑞𝑞𝑗𝑗   is probability of link j to be disturbed by 
the network tester 

E i∈  Link i, which belongs to set of links E 
E j∈  Scenario j, which denotes link j is disturbed 

S  s∈  Evacuation origin node s, which belongs to set of origin nodes S 
V  v∈  Evacuation destination node v , which belongs to set of destination nodes V 
K  k∈  Shortest path k from S to V, which belongs to set of paths K 

TC Total travel cost of network; 𝑡𝑡𝑡𝑡𝑖𝑖 is the expected travel cost of link i 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 Traffic flow on link i  
ℎ𝑘𝑘 Traffic flow on path k  

𝑡𝑡𝑖𝑖0 Free flow travel cost on link i  at initial computation iteration 
𝑡𝑡𝑖𝑖,𝑗𝑗 Travel cost on link i  under scenario j  
𝑑𝑑𝑘𝑘 Travel cost on path k  
𝑓𝑓𝑖𝑖 Risk on link i  due to flooding 
𝑟𝑟𝑘𝑘 Risk on path k  
𝑓𝑓𝑠𝑠 Generation of trip demand on origin node s  
𝑎𝑎𝑖𝑖,𝑘𝑘 Parameter that takes value 1 if link i  is on path k , 0 otherwise 
𝑏𝑏𝑠𝑠,𝑘𝑘 Parameter that takes value 1 if path k  starts at node s , 0 otherwise 
𝑡𝑡𝑣𝑣,𝑘𝑘 Parameter that takes value 1 if path k  ends at node v , 0 otherwise 
α The parameter in BPR function, which is 0.15 after reference 

0β  The parameter in BPR function, which is 4.0 after reference 

1β  Impact factor for travel cost 

2β  Impact factor for risk due to flooding 

θ Degree of selectiveness for the tester to disturb specific links  
DC Disruption cost factor 
ε Convergence criterion for computation 
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The notation scenario j means that link j is disturbed, and the other links are in 
normal use. Under any scenario, the state of each link is either disturbed or not 
disturbed. If link i is not disturbed, it remains with its original travel cost 𝑡𝑡𝑖𝑖0 ; 
otherwise when the link is disturbed, the link’s travel cost will increase to a much 
higher level by multiplying a disruption cost factor (DC), which is considered to be 
a big constant value. The evacuation destination nodes, and evacuation origin 
nodes are limited and known so that the evacuation paths can be recalculated 
when a particular link is disturbed. As a result, the change of the assignment of the 
evacuation traffic demand may take place. In the traffic assignment process, the 
increase of travel cost and the encountered flooding risk have negative effects on 
the evacuation route and destination choices. When each player has no more 
incentive to move a different strategy, the game will end. In the process for an 
equilibrium to be achieved, on one hand, the higher link use probability means a 
safer path choice, on the other hand, the higher link failure rate means that the 
disturbing of this link leads to more total travel cost loss and is more critical in the 
network, which actually also represents the network vulnerability.  

Formulation of Problem 

( ) i i j i i j
i E j E i E

p tc q p t
∈ ∈ ∈

= ⋅ =∑ ∑ ∑p q ,min max TC q, p             (1) 

Subject to: 

1; 0j j
j E

q q j E
∈

= ≥ ∀ ∈∑                            (2) 

,k i k
k K

i
k

k K

h a
p i E

h
∈

∈

∑
= ∀ ∈

∑
                           (3) 

( ),maxk i i ki E
r f a k K

∈
= ⋅ ∀ ∈                          (4) 

( ),k i i k
i E

d tc a k K
∈

= ⋅ ∀ ∈∑                         (4’) 
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( )

( )( )
1 2

1 2

,

,

k k

d rx x

d r
s k

k s

s x
x K

e b
h o k K

e b
β +β

β +β

∈

= ∀ ∈
∑

             (5) 

The game of the two players is formulated as a minimax problem presented in 
Equation 1. Equation 2 is the constraint condition for the failure probabilities, which 
are between 0 and 1, and the summation of the probabilities equals 1. Equation 3 
defines the link choice probability that is the ratio of the sum of demands of all 
paths using the link to the total demand. According to the bottleneck theory, 
Equation 4 states that the maximum link risk encountered by the path is defined as 
the risk of the path. Similarly, Equation 4’ calculates the travel cost of the path. 
Equation 5 is used to depict how the evacuation demand is assigned to the each 
path from an evacuation origin, where parameter 𝛽𝛽1 is impact factor for the travel 
cost through a path that connects the origin node with the destination node, and 
the parameter 𝛽𝛽2  is impact factor for the path risk under hurricane evacuation 
through the path connecting the origin and the destination nodes. Following 
Cheng’s study in 2008, the two parameters 𝛽𝛽1  and 𝛽𝛽2  are set at -0.05 and -0.5 
respectively (29). 

2.2 Solution Methodology 

The model in Equations 1 through 5 is a minimax problem, which is an NP-hard 
problem. Sheffi in 1985 used the method of successive averages (MSA) to solve 
such kind of problems (31), in which the players make decisions based on the 
history of the opponent’s strategies. Bell found that the minimax problem with 
game theory can be formulated as a linear programming problem (7). In addition, 
some previous experiences showed that using the MSA strategy may obtain an 
approximate solution to this problem. Qiao provided a formal proof for the 
convergence of the MSA solution method, while the BPR function was introduced 
and used to describe a congestion effect (10). In this study, Equation 3 indicates 
that the inequation 0 ≤ pi ≤ 1  is a true statement. In addition, the objective 
function is only related to three variables (pi, qj, and ti,j), and the variable ti,j is 
related to the other two variables ( pi, qj). The above two facts make the problem 
model in Equations 1 through 5 meet the same formats in Bell’s model and Qiao’s 
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model (please refer to Qiao’s paper of 2014 for detail proof of convergence of 
solution to these problems). As a result, the solution strategy of MSA is also 
applicable and used to solve the model of this problem. The following are the 
algorithm procedures followed to find the solution. 

Step 0: Initialize, qj0 = 1/L,  pi0 = 0 and n  (number of iterations) = 1, where L 
is the number of network links. 

Step 1: Calculate n
itc , the expected travel cost of link i , as shown in Equation 6.  

, j

n n n
i i j

j E
tc t q

∈

=∑                (6) 

Step 2: Calculate the shortest evacuation paths from S to V. Using the tcin 
calculated, the Floyd-Warshall algorithm (32) is used to identify the shortest paths 
and determine the dummy variables of ai,k, bs,k, and cv,k. Then update the path 
risks and costs using Equation 4, calculate the choice probability of each path in

1 2

1 2

,

,

k k

d rx x

d r
s k

s x
x K

e b
e b

β +β

β +β

∈
∑ , and assign the evacuation demand according to the probabilities of 

choice for the paths using Equation 5.  

Step 3: Calculate the traffic flow on link i, using ,k

n n
i i k

k K
flow h a

∈
= ∑ . Update tin by BPR 

function expressed in the following equation where icap  is the capacity of link i. 

0
0 1

nflown i
i i capi

t t
β  = +α  

  
                (7) 

Step 4: Calculate auxiliary link use probability yin using Equation 3. Update link 
use probability (MSA). 

11 1p 1 pn n n
i i iy

n n
−   = + −   

   
              (8) 

Step 5: In this study, a logit function as shown in Equation 9 is adopted to 
calculate the link disturbance probability (within a varying degree), rather than 
seeking the worst 𝐪𝐪  (8). In Equation 9, the parameter θ  is used to represent the 
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degree of selectiveness or aggressiveness to disturb the links. For any two links, 
there may be a difference in the extent to maximize the network total cost, a larger 
θ  may lead to more disparity of disturbance probability between the two links. 
When θ is zero, the evil tester would be indiscriminate for all the links. 

( )
( )

,

,

exp

exp

n n
i i j

i En
j

n n
i i e

e E i E

p t
q

p t
∈

∈ ∈

θ ⋅ ∑
=

θ⋅∑ ∑
                         (9) 

Step 6: Update travel cost ti,jn  on link i  under scenario j , where the disruption 
cost factor (DC) is set at 10, which is considered a big number for the model. 

( )
,

n
n i
i j n

i

i jDC t
t

i jt
 =⋅

=  ≠
            (10) 

Step 7: Check termination criteria. Bell came up with a weighted entropy into 
the objective function (8). Equation 1 can be improved in the following equation. 

,

1(q, p) lnj i i j j j
j E i E j E

q p t q q
∈ ∈ ∈

 = +∑ ∑ ∑ θ 
p qmin max TC           (11) 

When the game achieves equilibrium, the total cost will change weakly. In this 
study, if -1| (q, p) (q, p) |n nTC TC− ≤ ε , then the computation stops, otherwise set n = n+1 
and return to Step 1.  

3   Results/Findings 

3.1 Computation Results 

The effectiveness of the proposed method and solution procedure are tested by a 
sample network. As shown in Figure 1 the sample network is designed to provide 
basic network components with seven nodes and twelve links. Each link is marked 
with a link number (letter), link free-flow travel cost, and link flooding risk. There 
are two evacuation destination nodes, two evacuation origin nodes with 1,000 trips 
in evacuation demand. 

The solution algorithm is coded in Matlab and run in a Dell Precision M4800 
laptop computer with i7 CPU at 2.9 GHz and with 16 GB memory. In the iterative 
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process, the objective function achieves convergence in about 10 seconds with 200 
iterations.  
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Intermediate node

Evacuation destination

Link risk

Link travel cost
Link number

 
Figure 1   Sample test network 

 
Table 2 presents the solution process for the example problem as it proceeds 

with the first two iterations. At the initial condition, the tester does not yet know 
how the travelers seek the evacuation paths, and therefore all link use probabilities 
and link failure probabilities are uniformly distributed, i.e., 𝑞𝑞𝑗𝑗0 = 1/𝐿𝐿, and  𝑝𝑝𝑖𝑖0 = 0. 
Similarly, each link travel cost is equal to the link’s free flow travel time. After the 
initial information is set, the travelers seek all the shortest paths from evacuation 
origins to evacuation destinations based on the expected link costs. By combining 
the path total cost and risk, the evacuation demand assignment ℎ𝑘𝑘1   is achieved. 
Then, link flow  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖1  is calculated, and link travel cost 𝑡𝑡𝑖𝑖1  is updated by BPR 
function. Through Equation 3, the link use probability 𝑝𝑝𝑖𝑖1 is calculated. Hence, the 
tester produces its strategy 𝑞𝑞𝑖𝑖1 according to Equation 9. 

In the second iteration, the computational procedure repeats as in the first 
iteration. It is worth noting that the shortest paths are identified based on the 
expected link cost  𝑡𝑡𝑡𝑡𝑖𝑖1 (which is updated with Equation 6) rather than the link travel 
cost 𝑡𝑡𝑖𝑖1.  The expected link cost is equal to the link travel cost 𝑡𝑡𝑖𝑖0 in the first iteration 
because all the link failure probabilities are the same at the initial condition. 

In contrast to the first iteration, the most remarkable shift is that link c and j are 
no longer used in the second iteration. The possible reason would be that the link 
failure probabilities of the two links are 89% and 4.1%, which are the top two in the 
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first iteration. It means the network total cost will encounter the most increases if 
these two links are disturbed, which means the tester would love to disrupt the two 
links. Then, the expected cost in these links are increased so that the travelers 
would avoid them when choosing the evacuation routes. 

 
TABLE 2 Computation Results of First and Second Iterations 

1st Iteration  
Paths Links 

Evacuation 
OD Pair 

Shortest Path, 
(Expected Travel 
Cost, Travel Risk) 

Probability 
of Choice ℎ𝑘𝑘1  

Link 
ID 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖1 

 
 

𝑞𝑞𝑖𝑖1 

A-C 
b-j, (3, 0.7) 0.2316 232 a 269 2.001 0.135 0.006 
a-i, (3, 0.4) 0.2691 269 b 731 1.021 0.366 0.019 
b-g-i, (3, 0.6) 0.2434 243 c 725 2.040 0.363 0.890 

A-D b-k, (2, 0.6) 0.2559 256 d 275 2.001 0.138 0.007 

B-C 
c-j, (4, 0.7) 0.2143 214 e 0 1.000 0.000 0.000 
c-g-i, (4, 0.4) 0.2489 249 f 0 1.000 0.000 0.000 

B-D 
c-k, (3, 0.4) 0.2617 262 g 492 1.004 0.246 0.005 
d-m, (3, 0.2) 0.2751 275 h 0 1.000 0.000 0.000  

i 761 1.024 0.381 0.023 
j 446 2.006 0.223 0.041 
k 518 1.005 0.259 0.006 
m 275 1.000 0.138 0.002 

2nd Iteration 
Paths Links 

Evacuation 
OD Pair 

Shortest Path, 
(Expected Travel 
Cost, Travel Risk) 

Probability 
of Choice ℎ𝑘𝑘2 

Link 
ID 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖2 

 
 

𝑞𝑞𝑖𝑖2 

A-C a-i, (3.329, 0.4) 0.5113 511 a 511 2.010 0.256 0.246    
b 489 1.004 0.244   0.015  

  c 0 2.000 0          0.097 
A-D b-k, (2.232, 0.6)   0.4887 489 d 1000 2.145 0.500     0.487 
B-C d-h-g-i, (5.396, 

0.4)  
0.4473 447 e 0 1.000 0          0.001 

 
  f 0 1.000 0          0.001 

B-D d-m, (3.166, 0.2) 0.5527 553 g 447 1.003 0.224    0.001    
h 447 1.003 0.224     0.001  
i 958 1.061 0.479     0.017 
j 0 2.000 0          0.097 
k 489 1.004 0.244     0.015 
m 553 1.007 0.277     0.023 

𝑡𝑡𝑖𝑖2 𝑝𝑝𝑖𝑖2  

𝑡𝑡𝑖𝑖1 𝑝𝑝𝑖𝑖1 
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3.2 Comparison of Game Models 

Three previous models that utilize game theory to measure network vulnerability 
are also implemented for the sample network, and the results are compared with 
ours. 

Table 3 Comparison of Results of Four Models† 

Model Developed Qiao’s Model  Bell’s Model Lownes’ Model 
Result 1 (β2 =-0.5) Result 2 (β2 = 0) (2015) (2008) (2011) 

ID  
Failure Use ID Failure Use 

ID 
Failure Use 

ID 
Failure Use 

ID 
Failure Use 

(%) (%)  (%) (%) (%) (%) (%) (%) (%) (%) 
d 41.8 25.0 d 42.7 25.0 c 50.0 25.0 c 50.1 25.1 c 21.5 25.1 
c 28.6 25.0 c 29.2 25.0 d 49.9 25.0 d 49.8 24.9 d 20.8 24.9 
b 6.5 33.5 b 6.7 33.5 j 0.1 0.1 j 0.1 0.1 b 10.1 35.2 
j 6.3 16.8 a 4.9 16.5 b  25.0 b  25.0 i 10.1 35.2 
a 4.8 16.5 m 4.4 28.7 a  25.0 a  25.0 j 7.7 14.8 
i 4.5 32.5 i 3.7 29.0 m  12.5 m  12.5 a 7.6 14.8 
m 2.7 25.3 j 3.2 14.5 i  49.9 i  49.9 k 6.4 26.0 
k 2.2 25.5 k 2.8 27.8 k  37.5 k  37.5 m 5.8 24.0 
g 1.2 20.0 g 1.0 17.2 g  25.0 g  24.9 g 4.8 20.4 
f 0.6 12.5 f 0.6 13.6 f  0.0 f  0.0 h 1.8 0.9 
h 0.5 12.1 h 0.4 9.9 h  12.5 h  12.5 f 1.7 0.0 
e 0.2 4.0 e 0.2 4.6 e  0.0 e  0.0 e 1.7 0.0 
√ Congest. effect √ Congest. effect √ Congest. effect × Congest effect × Congest. effect 
√ Evacuation trips √ Evacuation trips × Evacuation trips × Evacuation trips × Evacuation trips 

†: Ranked by link failure probability in descending order;  √: Function available;  ×: Function not available  

The three models include Qiao’s model (2015), Bell’s model (2008) and Lownes’ 
model (2011). The results of the three models are compared with our model results 
in Table 3, where the link ID is listed according to failure probabilities ranked in 
descending order, and the link use probabilities are also presented. Two sets of 
results are included for our model based on two levels of risk impact factor β2. 
Because the travel demands in the other three models are inelastic, it is assumed 
that the demand in each OD pair of A-C, A-D, B-C, and B-D is 500 trips for the three 
models, while in our model only an evacuation demand of 1,000 trips is assumed 
at origins A and B respectively. At the end of Table 4, the features of each model 
are described briefly.  

As shown in Table 3, in all the four models the most critical two links are link c 
and link d, which checks well for the effectiveness of our model and its solution 
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strategy. In addition, the following phenomena are observed and are believed to 
be related to the features of these models. Firstly, in our model, link d is more 
critical than link c, but the order is opposite in the other models. It might be 
because that the disturbed link d would lead to more detour cost in our model, and 
the elastic evacuation demand condition in our model is different from the fixed 
demand in the other models. Secondly, in Qiao’s and Bell’s model, except in link c, 
link d, and link j, other failure probabilities are equal to zero. The reason is that in 
Qiao’s and Bell’s models one link is determined to be disturbed rather than using a 
disruption cost factor and a logit function to reassign the demand for all links in our 
model. Thirdly, some link use probabilities in Qiao’s Bell’s, and Lownes’ models are 
equal to zero, however all links in our model are utilized. This may be because of 
the path/destination choice mechanism in our model that allows the evacuees to 
choose all possible links and routes to avoid the flooding risk. Fourthly, compared 
with the model result under a lower risk impact factor (β2 = -0.5) with a higher 
impact factor (β2 = 0), link use probabilities on links with high flooding risks are 
significantly reduced when evacuees are more sensitive to flooding risk at a higher 
risk impact factor. For example, the link use probabilities on links i and j are reduced 
from 32.5% and 16.8% at β2 = -0.5 to 29.0% and 14.5% at β2 = 0, respectively, while 
the link use probabilities on links k and m are increased from 25.5% and 25.3% at 
β2 = -0.5 to 27.8% and 28.7% at β2 = 0, respectively. Obviously, the changes of link 
use probabilities on these links at the two risk impact factors are due to the fact 
that evacuees are more/less concerned about the higher flooding risks on link i and 
j (0.4 and 0.7 respectively) than on links k and m (0.3 and 0.1 respectively) under 
the two different risk impact factors. 

3.3 Impacts on Evacuation Routing  

The effects of the consideration on travel cost and flooding risks on evacuation 
routing are depicted in the total risk vs. β1 and total cost vs. β2 curves in Figure 2. 

As shown in Figure 2, when the impact factor for travel cost β1 is increased, the 
evacuees are more sensitive to travel cost/time spent on the evacuation routes at 
a higher β1 than at a lower value. The total risk encountered in all the links of the 
evacuation paths computed using our model shows an increasing trend along with 
the increase of the impact factor on travel cost, which means the evacuees are 
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more prone to taking flooding risks in selecting evacuation routes as they are more 
sensitive to the travel time or cost on the routes. 

 

 
(a) Total risk vs. β1 

 
(b) Total cost vs. β2 

Figure 2 Effects of model parameters on network cost and risk 

 

On the other hand, when the impact factor for flooding risk β2 is increased, the 
evacuees are more sensitive to flooding risks encountered on the evacuation routes 
at a higher β2 value than at a lower value. The total travel time or cost in all the links 
of the evacuation paths computed using our model shows an increasing trend along 
with the increase of the impact factor on flooding risk, which means the evacuees 
are more willing to take detours in selecting less risky evacuation routes as they are 
more sensitive to the flooding risk on the links and routes.   
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4   Impacts/Benefits of Implementation 

After the test with a sample network, the proposed game model and the solution 
strategy are applied to a real evacuation network in a case study. The coastal 
network of Hancock County of the Mississippi Gulf Coast area is used for the case 
study. The county has a population of 46k most residing near the coast. There are 
important highway corridors such as I-10, I-59, and US 90 going through or by the 
study area. The network in the study contains 1,036 links and 439 nodes, and the 
topological structurer with other information are shown in Figure 3 (a) and (b).  

The link flooding risks are calculated by using the Neidoroda method and data 
(27). The origins of evacuation trip demands are calculated from the social-
economic data of Traffic Analysis Zones (TAZ) provided by the Mississippi 
Department of Transportation (MDOT) and the evacuation destination nodes are 
determined according to the evacuation routes designated by MDOT or due to the 
vicinity to a major highway. The population and link risk information of the network 
in the study area is shown in Figure 3 (c). The emergency scenario is assumed to 
evacuate the population below the dotted line of the study area in the figure 
referred to as “evacuation area” to the area above the dotted line referred to as 
the “non-evacuation area”. Therefore, the traffic trips according to user 
equilibrium model (UE) in the non-evacuation area are regarded as background 
traffic for the evacuation operation.  

A set of parameters are chosen to set up the inputs for the model, and 
convergence criterion. The model was coded and run in Matlab 2014 using the 
same Dell laptop computer as mentioned earlier. The program reaches 
convergence in a little over 10 minutes. 
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(a) Map of study area (b) Road network of study area 
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(c) Evacuation network in study area 

 

Figure 3 Map and network of study area in Mississippi coast 
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The computation results for the evacuation network using the proposed game 
model and solution strategy are shown in Figure 4, where the level of link failure 
probabilities or critical degrees of links from smallest to largest are illustrated in 
colors from green to red with red being the most critical. The analysis of the 
computation results, reveals the following major findings.  

 

HighMediumLow

Interstate 10

Critical degree

 

Figure 4  Illustration of critical links of evacuation network 

 

Firstly, in general, the closer the links to the evacuation destination nodes, the 
higher the link failure probabilities would be, which means these links are more 
critical than others in the network because the travelers will search for an 
alternative destination node with more cost induced if the links close to the original 
destination are disturbed. This finding may suggest that importance and attention 
be paid to links close to destination nodes to possibly improve evacuation 
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performance. Secondly, the links that direct from the non-evacuation area to the 
evacuation area are less critical than links in the opposite directions, and the links 
with high redundancy are less critical than the links with low redundancy. This 
finding confirms the effectiveness of the traffic control strategies that make use of 
the less utilized highway capacities. For example the already proved contraflow 
strategy, which can balance the network flow and improve the throughput 
efficiency. Thirdly, the failure probabilities of both directions of Interstate 10 are 
higher than others links inside the evacuation area. This is because of the high 
capacities of the interstate highway traffic lanes in both directions and any 
disruption of this corridor would induce much costly detours in rerouting the traffic. 
Due to the high criticality degree of I-10 in the area, the link should be closely 
supervised and protected under a hurricane evacuation. 

 

5   Recommendations and Conclusions 

Based on the game-theoretic framework, this research study presents an approach 
to the estimation of vulnerability of a transportation network under hurricane 
evacuation, especially, when both link risk and evacuation destination choice 
behavior are considered. To achieve the solution convergence, a heuristic based 
algorithm using the method of successive averages is developed. In a sample 
network test, compared with other three models, the model and solution strategy 
generate reasonable results. The proposed method is applied to the analysis of the 
vulnerability of an evacuation network in Mississippi coast area under a hurricane 
invasion, and the link failure probabilities computed using the proposed method 
can be used to visualize the degree of link criticality for the evacuation scenario and 
the link flooding risks of the network. 

The total risk encountered in all the links of the evacuation paths computed 
using the proposed model shows an increasing trend along with the increase of the 
impact factor on travel cost, which means the evacuees are more prone to taking 
flooding risks in selecting evacuation routes as they are more sensitive to the travel 
time or cost on the routes. On the other hand, the total travel time or cost in all the 
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links of the evacuation paths shows an increasing trend along with the increase of 
the impact factor on flooding risk, which means the evacuees are more willing to 
take detours in selecting less risky evacuation routes as they are more sensitive to 
the flooding risk on the links and routes. The analysis of the evacuation network in 
Mississippi coast area using the proposed method suggests that links near the 
evacuation destinations tend to be more critical, and important traffic corridors 
such as I-10 in the evacuation network has a high degree of criticality.  

There are two challenges for the study in the future. Firstly, the risk/cost impact 
factors may not be the same for different areas or evacuees, and need more data 
and research to evaluate and understand these factors. Secondly, although the 
evacuation demand is elastic, the time dependent effect is not considered in this 
model. If the time dependent effect should be included, a dynamic evacuation 
behavior in route choice would be represented. 
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