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Abstract 

Inland waterways are a cost-effective and environmentally-friendly mode of freight 

transportation. Natural and man-made events can disrupt navigation and may halt barge traffic. 

Our research provides decision support during inland waterway disruption response to mitigate 

negative time and value loss impacts through development of a decomposition based sequential 

heuristic (DBSH). The DBSH integrates the Analytic Hierarchy Process and linear programming to 

prioritize cargo and allocate barges to terminals. We solve thirty-five scenarios based on real-

world Upper Mississippi River barge traffic data and find that our DBSH has similar performance 

compared to a previous approach with drastically improved computational time. 

 

Project Description 

Inland waterways are an important transportation mode to alleviate landside congestion and 

have proven to be economic, fuel-efficient, reliable, and environmentally-friendly (J. Kruse et al., 

2017). The inland waterway transportation infrastructure consists of navigable channels, lock and 

dam systems, cargo handling equipment, dredged material placement facilities, and berthing 

facilities or inland ports. The primary vessels used in inland waterway transportation are barges, 

which are flat-bottomed boats grouped together and pushed or pulled by a towboat. The lock and 

dam systems are used to allow barges to navigate sections of the river at varying water depth 

levels. 

The inland waterway transportation system of the United States (U.S.) is comprised of more 

than 12,000 miles of commercially navigable channels including the Upper Mississippi River, Lower 

Mississippi River, Ohio River, Gulf Intracoastal Waterway, Illinois River, and Columbia River system 

(Welch-Ross & Hendrickson, 2016). The U.S. inland waterway transportation sys- tem has 239 lock 

chambers operated at 193 sites and 1,930 cargo handling docks (USACE, 2016). In 2014, there were 

5,476 tugboats, towboats, and push boats and 31,043 barges operating on the U.S. waterways (The 

American Waterways Operators and the U.S. Maritime Administration, 2017). 

The tugboat, towboat, and barge industry in the U.S. supports international trade by 

providing tugboat services to large containerships and other oceangoing vessels entering U.S. ports. 

The industry contributes to domestic Commerce moving an average of 763 million tons of cargo on 



the U.S. waterways each year. In 2012, the U.S. inland navigation system moved 565 million tons 

of freight valued at $214 billion (Grossardt, Bray, & Burton, 2014). The primary commodities 

transported on the U.S. inland waterways are coal, petroleum and petroleum products, food and 

farm products, chemicals and related products, and crude materials. In 2014, the tugboat, towboat, 

and barge industry contributed $9.0 billion to the U.S. gross domestic product (GDP), invested 

nearly $2.2 billion (property, plant, and equipment), generated $15.9 billion of revenues, employed 

50,480 direct workers, and paid out $4.7 billion in compensation (The American Waterways 

Operators and the U.S. Maritime Administration, 2017). 

In addition to contributions to the U.S. economy, inland waterway transportation system 

offers other benefits in comparison to rail and land transportation modes including larger capacity 

to carry freight, fuel-efficiency, and safety. For dry cargo, the capacity of one barge is equivalent to 

the capacity of 16 railcars or the capacity of 70 semi-tractor trailers. For liquid cargo, the capacity 

of one barge is equivalent to the capacity of 46 railcars or the capacity of 144 semi-tractor trailers 

(Kruse et al., 2017). The average fuel efficiency in ton-miles per gallons is 647 for inland towing, 

477 for railroads, and 145 for truck. The ratio of rail and truck to towing fatalities (per million ton-

miles) is one fatality in the towing sector for every 21.9 in the rail sector and 79.3 in the truck 

sector. The ratio of rail and truck to towing injuries (per million ton-miles) is one injury in the 

towing sector for every 80.9 in the rail sector and 696.2 in the truck sector (Kruse et al., 2017). 

Due to these benefits, the U.S. Department of Transportation considers inland waterways 

as a freight alternative with potential to relieve roadway and railway congestion (Maritime 

Administration, U.S. Department of Transportation, 2011) and maintaining the availability of the 

inland waterway transportation system is prominent. However, the inland waterways system faces 

natural and man-made disruptions. Common disruptions to inland waterway freight transportation 

are ice, droughts, floods, vessel collisions, and infrastructure emergency repairs, which can negatively 

affect navigation infrastructure operations and channel water levels and cause system closures 

and thus economic losses. In September 2016, Lock and Dam No. 52 on the Ohio River required 

emergency repairs which halted the river traffic for more than fifteen hours. Tennessee Valley 

Towing, a towing industry, estimated their losses at $80,000 due to the river closure (Kelley, 2016). 

In March 2014, a barge collision occurred in the Houston Ship Channel, which shut down the 



Houston-Galveston port for five days, causing thirty-seven tows to be delayed in the Gulf 

Intracoastal Waterway resulting in an economic loss of $785,000 (Kruse & Protopapas, 2014). 

When disruptions halt barge traffic, barges that need to traverse the disrupted segment of 

the waterway need to be rerouted to accessible terminals where the cargo is then offloaded for 

land transport to its final destination. Our research provides decision support to transportation 

planners and engineering managers during inland waterway disruption response to mitigate 

negative impacts. Our main motivation is to develop a methodology to solve large problem 

instances in a shorter amount of computational time in order to address real world-sized 

transportation system decisions. We present a decomposition based sequential heuristic (DBSH) 

approach that consists of three components: (1) cargo prioritization, (2) assignment of barges to 

terminals, and (3) scheduling of barges assigned to a terminal. The cargo prioritization component 

determines the priority index of each barge through the Analytic Hierarchy Process (AHP) (Saaty, 

1980) approach. Barges with higher priority indices are given higher priority consideration to be 

offloaded. This paper modifies an initial version on the AHP proposed by Tong and Nachtmann (2013) 

by using the weighted geometric mean method (WGMM) proposed by Xu (2000) as an 

aggregation method. 

The second component, assignment of barges to terminals, is formulated as an integer linear 

programming (ILP) model that minimizes total cargo value loss during the assignment. An initial 

version of the assignment model, where the ILP minimizes transportation and handling times was 

published in the proceedings of the 2015 American Society for Engineering Management (Delgado-

Hidalgo, Nachtmann, & Tong, 2015). The third component, scheduling of barges assigned to a 

terminal, is formulated as a mixed integer linear programming (MILP) model that minimizes total 

cargo value loss. 

 

Literature Review 

Inland waterways transportation faces natural and man-made events resulting in significant economic 

losses and environmental damage. The frequency of common inland waterway disruptions such 

as droughts and floods is expected to increase as a result of climate change (Edenhofer et al., 2014). 

We summarize recent real world examples of inland waterway disruptions and their associated 



consequences in Table 1. Given the significant impacts of inland waterways disruptions, increased 

expected frequency of natural disruptions, inland waterways system benefits in comparison to 

other transportation modes, and the waterways’ contributions to the U.S. economy, investigating 

pre- and post- disruption responses to support inland waterways seems to be crucial to 

maintaining a reliable transportation system. Next, we provide recent literature classified into three 

topics relevant for our research: inland waterway disruption response, cargo prioritization, and 

berth allocation problem. Finally, we conclude this section by discussing the contributions of our 

research. Table 2 summarizes the model and objectives from the reviewed papers in this area. 

Tong and Nachtmann (2013) presented a multi-attribute decision approach based on the 

AHP to prioritize cargo offloading during inland waterway disruptions. The authors assumed all barge 

cargo is assigned to the nearest capacity terminal for offloading. Delgado-Hidalgo et al. (2015) 

extended Tong and Nachtmann (2013) approach by using the priority index associated to each type of 

cargo and obtained with the AHP approach as input to solve the assignment and scheduling of 

disrupted barges to available terminals. The authors formulated an ILP model that minimizes 

transportation and handling time to assign disrupted barges to terminals. The scheduling of the 

barges at each terminal was undertaken based on the priority index of the cargo. 

Tong, Nachtmann, and Pohl (2015) studied cargo prioritization by developing a priority 

index denominated cargo value decreasing rate (CVDR). The CVDR is defined as “the rate at which 

the cargo’s economic and societal value diminishes as time elapses” (Tong, Nachtmann, & Pohl, 

2015, p.73). Cargoes with higher CVDR are given higher priority. The authors used value-focused 

thinking approach to assess the CVDR. A review of cargo prioritization techniques within inland 

waterway transportation is presented in Tong and Nachtmann (2012). 

  



Table 1. Inland waterway disruptions 

Disruption Year Consequences Reference 

Drought on Missis- 
sippi and Ohio rivers 

2005 Several barges ran aground. More 

than 60 boats and 600 barges were 

stopped. Delays caused $10,000 loss per day 

Güler, Johnson, and 
Cooper (2012) 

 

Barges crashed into 

Belleville Lock in 

Reedsville 

2005 Shutdown cost $4.5 million a day. 
General Electric closed its plant 

Güler, Johnson, and 
Cooper (2012) 

Flooding in the Mis- 
sissippi River 

2011 River barge traffic, transporting billions in 
crops, were delayed. River- boat casinos 
were closed for 6-8 weeks with an estimated 
loss of $14 million 

Amadeo (2016) 

Collision occurred 
in the Houston Ship 

Channel 

2014 Houston-Galveston port was shut 

down for 5 days. 37 tows were delayed in 

the Gulf Intracoastal water- way, which 

represented an estimated cost of $785,000 

Kruse and Protopapas 
(2014) 

A tow vessel crashed 
into a barge fleet 

2016 Spilling about 20 gallons of “residual 

petroleum-based product”. The incident 

shut down traffic in a three-mile portion of 

the river for more than 10 hours 

Torres (2016) 

Emergency  repairs on 
dam 52 

2016 River traffic stopped for 15 hours. 

Tennessee Valley Towing calculated a loss of 

$80,000 due to the river closure 

Kelley (2016) 

Towing vessel allided 

with Lock and Dam 52 

2017 The section of the river was closed. 

Queue was 12 vessels up-bound and 10 

vessels down-bound. Corn costs at the Gulf 

rose by about 2 to 3 cents per bushel, partly 

in response to the slowed flow of grain. 

Captain (2017) 

Barge collided with 
Smothers Park 

2017 Estimated half a million dollars to re- 
pair 

O’Rourke (2017) 



Table 2. Summary of inland waterway disruption response models 

 
Model Objectives Paper 

Integrated dynamic 

risk-based 

interdependency model 

with TOPSIS 

Evaluate dock-specific discrete resource allocation 
alternatives to improve port preparedness 

Whitman, 
Baroud, and 

Barker (2015) 

Metrics of network 

resilience, Stochastic 

approach, simulation 

Compute three metrics of resilience after a disruption 
event; loss of service cost, total network restoration cost, 
and cost of interdependent impacts 

Baroud, Barker, 
Ramirez- 
Marquez, and 
Rocco (2015) 

Dynamic framework 

– simulation 

Assessing multi-regional, multi-industry losses 

due to disruptions on the waterway networks including 

ports and waterway links; 

Quantify the effect of disruptions on industry in- 
operability 

Pant, Barker, 

And Landers 

(2015) 

Bayesian networks Model infrastructure resilience as a function of 

capacity measured with three components: absorptive, 

adaptive, and restorative 

Hosseini and 
Barker (2016) 

Price-endogenous, 

Spatial equilibrium, 

quadratic programming 

model and an input-

output model 

Estimate prices, economic surplus, and economic 
impacts of inland waterways disruptions on the 

U.S. corn and soybean transportation sector 

Yu, English, 
And Menard 

(2016) 

Simulation-based 
approach 

Study the economic impacts of disruption duration 
estimation and commodity type on inland waterway 
disruption response 

Oztanriseven 

And Nacht- 

mann (2017) 

Dynamic multi- 

objective transportation 

cost model 

Select the optimal alternative (waiting or rerouting the 
cargo) given the expected duration of the disruption 

 Zhang, Lee, and 
Holmer (2017) 

Nonlinear Integer 
Programming (NLIP), 
Genetic Algorithm (GA) 

Assign and schedule disrupted barges to inland 
terminals to minimize total value loss during a disruption 

event 

Tong and 
Nachtmann 

(2017) 

 

 
The barge terminal allocation component of the problem we are studying has a similar 

problem structure to the berth allocation problem (BAP). The BAP studies the assignment of a set 

of vessels to a given berth layout within a given time horizon (Umang et al., 2013). Like the BAP, the 

barge terminal allocation component of our problem studies the assignment of vessels to berths. In 



our case, vessels are disrupted barges and berths are inland waterway terminals. Unlike most of the 

BAP research that focuses on ocean shipping, our problem focuses on inland waterway shipping. 

Inland waterway shipping differs from ocean shipping in three main aspects. The first aspect is 

related to the size of the vessels. Due to the shallow waterways, inland waterway shipping requires 

to use shallow vessels such as barges that can safely navigate in the waterways and berth in the 

inland terminals. The second different aspect is associated to the transportation system 

infrastructure. Inland waterways transportation infrastructure includes lock and dam systems that 

allow barge tows to navigate sections of the river at varying water levels. Lock and dam systems 

are critical to inland waterway shipping. Finally, the third different aspect is related to the 

definition of routes. Unlike ocean shipping routes that are defined by calling sequence and calling 

ports, inland waterway shipping routes are defined just by calling sequence since inland ports are 

located across a single river axis (An et al., 2015). In addition, unlike the BAP, our research problem 

explicitly considers and prioritizes the type of cargo that the barges carry. 

The BAP for ocean shipping has been extensively studied as discussed in the BAP surveys 

developed by Bierwirth and Meisel (2010) and Bierwirth and Meisel (2015). On the other hand, 

our literature review identified two BAP papers that focus on inland waterways (Arango  et  al.,  2011;  

Grubîsíc  et  al.,  2014)  and  two  other  papers  (Lalla-Ruiz  et  al.,  2018; Tong & Nachtmann, 2017) that 

study a similar problem on inland waterways. Arango et al. (2011) developed an integrated 

simulation and optimization model based on GA approach to solve the BAP. Their model minimizes 

total service time for each ship and considers a first-come-first-served allocation strategy.  Grubîsić 

et al. (2014) formulated a MILP model to solve the BAP. Their model minimizes the total time of 

vessels’ stay in port and trans- shipment operation workload. Lalla-Ruiz et al. (2018) studied the 

waterway ship scheduling problem (WSSP). Unlike the BAP, the WSSP assigns ships to waterways 

rather than berths. Lalla-Ruiz et al. (2018) formulated a MILP model to minimize the total time 

required for the ships to pass through the waterways. Their model was solved with a greedy 

heuristic based on commonly used queue rules as well as a simulated annealing (SA) algorithm. Tong 

and Nachtmann (2017) studied the cargo prioritization and terminal allocation problem (CP- TAP). The 

CPTAP studies the assignment and scheduling of disrupted barges to inland port for inland 

waterway disruption response. The authors formulated the CPTAP as nonlinear binary integer 



program (NLIP) and developed a GA approach to solve their model. 

The reviewed inland waterway disruption response literature motives our research by pro- 

viding different indicators that evidence the negative impacts of inland waterway disruptions 

measured as total cost (Baroud et al., 2015; Oztanriseven & Nachtmann, 2017; Pant et al., 2015; 

Whitman et al., 2015; S. Zhang, Lee, & Holmer, 2017), cargo price and economic surplus (Yu, 

English, & Menard, 2016), and total cargo value loss (Tong & Nachtmann, 2017). 

When barge traffic is halted due to inland waterway disruptions, two alternatives to face the 

disruption are: the waiting alternative, waiting at the location at the time of disruption until the 

waterways are navigable, and the rerouting alternative, rerouting the cargo to available inland 

terminals for transport to the final destination via an alternative transportation mode. Similar to our 

work, Delgado-Hidalgo et al. (2015), Hosseini and Barker (2016), Oztanriseven and Nachtmann 

(2017), Tong and Nachtmann (2013, 2017),  and Zhang et al. (2017) identified rerouting the cargo 

as a suitable resilience strategy for inland waterway disruption response. In Zhang et al. (2017), if 

their model selects rerouting alternative as the optimal alternative, the authors assumed that the 

new routes correspond to the minimum cost path from the nearest available terminal. However, 

unlike our research, the assignment and scheduling of barges to terminals were not developed in 

their paper. Oztanriseven and Nachtmann (2017) results suggested that the alternative that 

minimizes total disruption cost for manufactured equipment and machinery commodity is to 

transfer the cargo to an alternative transportation mode, which motivates the rerouting 

alternative considered in our research. The authors concluded that the selection of the disruption 

response alternative depends on the expected duration of the disruption. From our inland 

waterway disruption response literature, only Whitman et al. (2015) and Tong and Nachtmann (2017) 

consider cargo prioritization. Tong and Nachtmann (2017) prioritized the cargo carried by the barges, 

while Whitman et al. (2015) prioritized alternatives that allocate resources to docks that handle 

specific type of cargo. 

From our cargo prioritization literature, only Delgado-Hidalgo et al. (2015) used priority 

indexes to solve the assignment and scheduling of disrupted barges to inland ports during 

disruption response. In Delgado-Hidalgo et al. (2015), the scheduling of the barges at each terminal 

was undertaken based on the barge’s cargo priority index; the higher the priority index, the earlier 



the barge is scheduled for offloading. However, this scheduling approach did not consider a disruption 

performance measure to guide the offloading sequence of the disrupted barges. We fill into this 

gap by formulating a MILP model that minimizes total cargo value loss to schedule barges to inland 

ports during disruption response. In addition, we modified the AHP approach proposed by Tong and 

Nachtmann (2013) by using the weighted geometric mean method (WGMM) proposed by Xu 

(2000) as aggregation method. The WGMM has proven to be an acceptable solution to derive 

weights from pairwise comparison matrices avoiding the known eigenvector method problems 

such as rank reversals (Barzilai, 1997). 

From our BAP literature, only Tong and Nachtmann (2017) consider cargo prioritization in 

their allocation and scheduling of barges to terminals. In fact, like our research, only Tong and 

Nachtmann (2017) consider cargo prioritization to assign and schedule disrupted barges to terminal 

for inland waterway disruption response. Tong and Nachtmann (2017) presented a non-linear model 

formulation to solve the CPTAP. There are two different components in their approach, assignment 

decisions and scheduling order, integrated into a single model. Their model requires the calculation 

of the actual contribution time defined as “the amount of time it takes for a disrupted barge to be 

transported by water to its assigned terminal, to incur any wait time until its prioritized offload 

order is reached, and to have its cargo offloaded” (Tong & Nachtmann, 2017, p.9). The actual 

contribution time of a barge depends on the actual contribution time of all the barges that have 

been served in the same terminal before that particular barge. Note that this calculation 

resembles a nested structure, non- linear in nature and computationally expensive. The non-

linearity of their model led Tong and Nachtmann (2017) to use a GA heuristic to solve their 

model. 

This project contributes a more computationally simple and efficient approach to model the 

CPTAP studied by Tong and Nachtmann (2017). The DBSH approach consists of linear models 

while the CPTAP formulation is a non-linear model. The decomposition used in our DBSH makes 

possible the use of off-the-shelf solvers to solve the linear models which allows for more efficient 

technology transfer into practice, whereas the CPTAP non-linear model requires developing 

specialized heuristic solution procedures. Our approach can be more widely adopted by planners 

in the maritime transportation community. 



Methodological Approach 

Problem Definition 

We define our problem using an inland waterway disruption occurred on January 20, 2014. A 

disruption occurred when the Arkansas and Missouri railroad bridge became stuck due to a 

malfunction, impeding barge tows to pass beneath the bridge. Figure 1 depicts the disrupted 

section of the Arkansas River. This section contains five lock and dam (L/D) systems that allow 

barges to navigate through varying water levels. The upper waterway section includes three 

terminals and one barge tow which commonly carries between nine to fifteen barges each. The 

lower waterway section includes seven terminals and seven barge tows. Based on the navigation 

direction, six of the eight barge tows (shaded in black) require crossing the point of disruption and 

therefore are disrupted barge tows. The other two barge tows (shaded in white) are not impacted 

by the disruption. 

 

Figure 1. Arkansas River disruption (Tong & Nachtmann, 2017) 

A disruption response needs to redirect disrupted barges to available terminals where their 

cargo is offloaded for transport to their final destination via an alternative transportation mode. 

We reasonably assume that each barge transports a single type of cargo whose volume is known. 

The terminals have limited capacity to offload a single barge at a time. The assignment of barges 

to terminals considers the volume of the barge, capacity and water depth of each terminal, draft 



depth of each barge, and a safety level to assure that the barges safely travel into the terminals. 

Due to the terminal limitations, some disrupted barges may not be assigned to a terminal if there 

is not available offload capacity. However, barges transporting hazardous cargoes must be assigned 

to a terminal and offloaded. Barges carrying non-hazardous cargo that are not assigned to a terminal 

are assumed to remain on the waterway to be salvaged at a later date which results in a total value 

loss of the cargo. Cargo loses value over time due to a variety of reasons including declining 

customer interest in the cargo as the delay increases and the perishable condition of the cargo. The 

value loss of the cargo depends on the volume of the cargo, the cargo value decreasing rate, and 

the total time it takes to deliver the cargo to its final customer. 

 

Decomposition Based Sequential Heuristic 

In this section, we describe our DBSH approach to assign and schedule disrupted barges during 

inland waterway disruption response. First, we present a general description of the DBSH, 

explaining how the three components of our heuristic including the cargo prioritization model, 

assignment model, and scheduling model are integrated into the DBSH. Next, we present an 

explanation of the three components of our approach. The first component is a modification of 

previous work conducted by Tong and Nachtmann (2013). In this article, we use the weighted 

geometric mean method (WGMM) as aggregation method (Xu, 2000) in the AHP approach. An 

initial version of the second component was proposed in previous work conducted by Delgado-

Hidalgo et al. (2015). 

 

Flow Diagram for the Decomposition Based Sequential Heuristic 

Figure 2 describes the overall flow of our DBSH approach. The shaded rectangles represent the three 

main components of the DBSH: Cargo Prioritization (Model 1), Assignment (Model 2), and 

Scheduling (Model 3) of barges to terminals. The first step of the heuristic is to determine the 

prioritization of each cargo (Step 1 in Figure 2). The Cargo Prioritization Model (Model 1 in Figure 

2) also determines the priority index of each barge based on the cargo commodity it carries. We 

then decompose the set of barges into subsets of barges based on the hazardous condition and 

priority index p of each barge (Step 2 in Figure 2). The priority index for hazardous cargoes is set 



to p = 1, and we assume there is enough capacity to offload all the barges carrying hazardous 

cargo. 

A sequential use of the Assignment Model (Step 3 in Figure 2) is as follows: initially, only those 

barges carrying the cargo with the highest priority are considered for assignment. This assures that 

the capacity of the terminals is first consumed by barges with the most important cargo (p = 1). 

Hazardous cargoes are also included in the first run of the assignment model since hazardous cargo 

is not allowed to remain in the river and must be offloaded. 

After running the Assignment Model (Model 2 in Figure 2) and knowing which terminals 

receive cargo of the highest priority, we update the capacity of those terminals (Step 4 in Figure 

2). In particular, the capacity available for each terminal to service barges carrying cargo with the 

second highest priority (p = 2) is strictly the remaining capacity after decreasing the capacity that 

was used by the barges with the highest priority. Once the capacity of the terminals has been 

updated, a second run of the Assignment Model is needed, this time including barges carrying 

cargo with the second highest relative priority. 

This process continues until barges at all levels of priority (Step 5 in Figure 2) have been 

considered or there is no remaining capacity at the terminals available. In the latter case, some 

non-hazardous barges may remain on the river and their total value is considered lost. The decision 

of leaving barges on the river to be salvaged at a later date is represented through the assignment 

of the barges to a dummy terminal. At this point, all barges have been assigned to a terminal for 

offloading (or remain on the river for the case when the barges have been assigned to a dummy 

terminal). However, the sequence in which they will be handled has not been defined yet. 

Therefore except for the dummy terminal for which scheduling is not needed, in the cases where 

more than one barge has been assigned to a terminal, we then solve the Scheduling Model (Model 3 

in Figure 2) at each terminal (Step 6 in Figure 2) considering the assigned barges to that particular 

terminal. Finally, we calculate the value loss derived from the assignment and scheduling 

decisions obtained with the DBSH (Step 7 in Figure 2). Next, we present an explanation of the 

three components of our approach. 



 

 

Figure 2. Flow diagram DBSH 

Model 1: Cargo Prioritization Model 

The first component of the DBSH deals with identifying the relative priority of each cargo type. 

The relative priority of each barge is based on pair-wise comparisons that take into account 

multiple important criteria of the decision makers as shown in Figure 3, which displays the four-

level AHP decision hierarchy for this problem (Tong & Nachtmann, 2013). The first level of the 

decision hierarchy presents the global objective of minimizing the negative impacts of the inland 

waterway disruption. The second and third levels of the decision hierarchy present the cargo’s 

attributes and subattributes, respectively. The fourth level of the decision hierarchy presents the 

alternatives to prioritize, which are the different types of cargo carried by the barges. 

Below we summarize the steps undertaken to determine the relative priority of the cargo 

(and hence of each barge). For all these steps we use AHP, the WGMM aggregation method 

proposed by Xu (2000), and the pair-wise comparison matrices used by Tong and Nachtmann (2013). 

The first step is to determine the priorities of the attributes shown in the second level of the decision 



hierarchy based on the aggregation method applied to the pair-wise matrix that makes 

comparisons between the attributes. There is no need to use AHP and WGMM to calculate the 

relative priority of the subattributes, since there are only two subattributes for the attributes 

classified into subattributes. 

The next step is to calculate the relative priority of each cargo with respect to the associated 

subattribute/attribute. These calculations are based on the aggregation method applied to the 

pair-wise matrices that make comparisons between the alternatives (cargo type) with respect to 

each subattribute and with respect to the attributes Value and Urgency (because these attributes 

are not classified into subattributes). 

 

 

 

Figure 3. AHP decision hierarchy for cargo prioritization within inland waterway 

transportation (Tong & Nachtmann, 2013) 

The priorities of each element at each hierarchy level with respect to the element at the 

associated higher hierarchy level are used to calculate the overall priorities for the alternatives 

shown in Table 3. The type of cargo with the highest priority (0.386) is Petroleum and the type 

of cargo with the lowest priority (0.091) is Coal. 

  



Table 3. AHP based priority for cargo types 

Alternatives (Cargo types) Priority Rank 

Petroleum 0.386 1 

Chemicals 0.178 2 

Primary Manufactured Goods 0.126 3 

Food and Farm Products 0.124 4 

Crude Materials 0.094 5 

Coal 0.091 6 

 
 

Model 2: Assignment Model 

The second component of our DBSH is the assignment of disrupted barges to the available 

terminals. The assignment problem is formulated as an ILP model. The decision variables are yij ∈ 

{0, 1}, which take value of 1 if barge j is assigned to terminal i; and 0 otherwise. We use the 

following notation in our model (Delgado-Hidalgo et al., 2015): 

 
J is the set of barges carrying non-hazardous cargo 

H is the set of barges carrying hazardous cargo 

I is the set of real terminals 

D is the set of dummy terminals (one, which is used to represent the case when a barge is not 

assigned to a terminal) 

N is the set of commodity cargo types 

tij is the water transport time of barge j ∈ J ∪ H from its location at the time of disruption to 

terminal i ∈ I 

rij is the land transportation time of barge j ∈ J ∪ H from terminal i ∈ I to its final destination 

hij is the handling time of barge j ∈ J ∪ H at terminal i ∈ I 

αj is the value decreasing rate of barge j ∈ J ∪ H cargo per unit volume per unit time 

cj is the cargo volume on barge j ∈ J ∪ H 

vj is the value of the cargo on barge j ∈ J ∪ H 

ejn is a binary parameter that takes value of 1 if barge j ∈ J ∪ H carries cargo n ∈ N ; and 0 

otherwise 

ui is the capacity at terminal i ∈ I during the disruption response 

wi is the water depth at terminal i ∈ I  

dj is the draft depth of barge j ∈ J ∪ H  



s is the safety level 

 

Equation (3.1) corresponds to the objective function which is to minimize the total cargo 

value loss associated to the assignment decisions. The first part of the objective function consists 

of the cargo’s value decreasing rate αj, which describes how the cargo loses value as the time 

elapses and is given in units of volume and units of time, multiplied by the cargo’s volume and the 

transportation time (water and land) plus the handling time. Note that the second part of the 

objective function is used to represent the cases when the barges carrying non-hazardous cargo 

cannot be assigned to a terminal. Those cases result in a total value loss equal to the cargo’s 

total value. 

 

 

Constraint set (3.2) ensures that each barge with non-hazardous cargo is assigned to a terminal, 

including the dummy terminal as option when the barge is left on the river to be salvaged at a later 

date. Constraint set (3.3) assures that hazardous cargoes are assigned to a real terminal. 

Constraint set (3.4) imposes the capacity constraint. This will be the coupling constraint between 

the different runs of the assignment model (Model 1 in Figure 2) in the DBSH. For the first run of 



the assignment model, the right hand side of this constraint set will be equal to the given capacity 

of each terminal. Subsequent runs of the assignment model may face a reduction in the available 

capacity due to assignment decisions made by the previous runs of the assignment model. 

Constraint set (3.5) ensures that the safety level is observed for any assignment. Finally, constraint 

set (3.6) corresponds to the binary nature of the decision variables. 

 

Model 3: Scheduling Model 

The third component of our decomposition based sequential heuristic is the scheduling of 

disrupted barges assigned to a terminal. We formulate the scheduling problem as a MILP model 

defined on a graph G = (V, A) where the set of vertices V = B ∪ {o} ∪ {d} consists of a vertex for each 

barge in the set B of barges, as well as dummy vertices {o} and {d} that represent the first and last 

barge to be serviced at the terminal, respectively. The set of arcs A is a subset of V × V. The decision 

variables are xjk ∈ {0, 1} , ∀ (j, k) ∈ A. xjk takes value of 1 if barge j is serviced before barge k; and 0 

otherwise. We also use the decision variables sj, ∀ j ∈ V to represent the starting service time of 

barge j. Since the scheduling model is solved at each terminal, the parameters handling time, water 

transportation time, and land transportation time used to solve the model are the ones associated 

with that particular terminal. We use the following additional notation in our model: 

M is a parameter given a big number. Its function is to discard constraint set 3.11 for the cases 

when barge j ∈ J ∪ H is not serviced before barge k (xjk = 0) 

 Equation (3.7) represents the objective function which minimizes the total value loss 

associated with the scheduling decisions. Note that unlike the assignment model objective function 

(equation 3.1) that assumes a starting service time equal to the water transportation time, the 

scheduling model defines the starting service time as a decision variable that considers the cases 

when the barges have to wait to be serviced after their arrival. 

 Constraint set (3.8) assures that there is only one barge serviced first. Constraint set (3.9) 

assures that there is only one barge serviced last. Constraint set (3.10) is the flow balance 

constraint that assures there is only one barge serviced at a time, that is, each barge has only one 

predecessor and only one successor. Constraint set (3.11) represents the sequence of the barges. 



Constraint set (3.12) assures that each barge has arrived to the terminal before start being serviced. 

Constraint sets (3.13) and (3.14) correspond to the nature of the decision variables. 

 

 
 

  



Results/Findings 

First, we solve a case study taken from Tong and Nachtmann (2017) which is illustrated in Figure 4 

(Tong & Nachtmann, 2017). This case study is based on data collected from a 154-mile section of 

the Upper Mississippi River where a disruption occurs. The section of the river contains six lock 

and dam (L/D) systems enumerated from fourteen to nineteen. A disruption occurs at lock and dam 

sixteen which divides the section of the river into two sub- sections (upper, shaded in light gray; and 

lower, shaded in dark gray). The upper waterway section includes eight terminals and five barge 

tows. Based on the navigation direction, two of the five barge tows (shaded ovals) require crossing 

the point of disruption and therefore are disrupted barge tows. The lower waterway section 

includes eleven terminals and three disrupted barge tows among a total of eight barge tows. 

 

 

 

Figure 4. River disruption case study (Tong & Nachtmann, 2017) 

 



For the disrupted barge tows, Figure 4 illustrates the barges carried by each barge tow. A notation 

of U or L is given to the barge number to specify if the barge is located at the upper (U) or lower 

(L) section of the river respectively. An underlined barge number denotes that a barge is carrying 

hazardous cargo. The barge tow number, the barge tow location, the number of barges carried 

by each barge tow, the traveling direction of each barge tow, the section of the river where each 

barge tow is located at time of disruption, and the barge number carried by each barge tow are 

presented in Table 4. The rows shaded in light gray and dark gray contain data for the disrupted 

barge tows in the upper and lower section of the river respectively. The total number of disrupted 

barges is twenty-six and eighteen for the upper and the lower section of the river respectively. 

 

Table 4. Barge location. Updated from Tong and Nachtmann (2017) 

 

All data related to the case study is assumed to be known. The barge locations are 

uniformly distributed across the section of the river based on the location of the terminals. The 

type of cargo carried by each barge is defined based on the probability density function estimated 

from the tonnage data shown in Table 5. The volume of the cargo is assumed to be 1,000 tons per 

barge. Petroleum and fifty percent of the chemicals are considered hazardous cargo. The value 



decreasing rate per each cargo type is calculated per 1,000 tons and per hour based on data given in 

Table 5. The cargo value is calculated based on the estimated market price given in Table 5 and 

the cargo volume. 

Water transportation time is calculated based on the barge and terminal locations, and the 

assumed barge average speed of 5 miles per hour. The handling time and land transportation time 

are uniformly distributed between 5-10 hours and 18-96 hours, respectively. The draft of the 

barges varies between 6 and 14 feet and are based on a probability density function estimated 

from the vessels draft data provided by U.S. Army Corps of Engineers Navigation Data Center 

(USACE, 2012). The water depth of the terminals ranges between 8 and 15 feet. The safety level 

is set to 1 foot. The capacity of the terminals is assumed to be 5,000 tons. 

 

Table 5. Commodity type data. Updated from Tong and Nachtmann (2017) 

 

We implement our DBSH with Concert Technology C++ and solve the models with CPLEX 12.6. 

The DBSH is solved twice, one per each section of the river. We compare our results with the 

CPTAP results obtained by Tong and Nachtmann (2017). We use the DBSH to obtain the 

assignment and scheduling of the barges to terminals and calculate the total value loss of our 



solutions by using Equation 3.15 (Tong & Nachtmann, 2017). 

where aijk is the actual contributing time of barge j ∈ J ∪ H that is assigned to terminal i ∈ I in the 

kth order. rij is the land transportation time of barge j ∈ J ∪ H from terminal i ∈ I to its final 

destination. cj is the cargo volume on barge j ∈ J ∪ H. αj is the value decreasing rate of barge 

j ∈ J ∪ H cargo per unit volume per unit time. vj is the total value of barge j ∈ J ∪ H cargo. xijk 

are the decision variables that take value of 1 if barge j ∈ J ∪ H is assigned to terminal i ∈ I in 

the kth order; and 0 otherwise. For the lower waterway section of the case study, our DBSH and 

the CPTAP approach both result in the same assignment and scheduling decisions as shown in 

Figure 5. Barges L4 and L16 remain on the waterway because their draft depths exceed the water 

level of the accessible terminals. The total value loss is found to be $420,302. The solutions for the 

upper waterway section of the case study differ between the two approaches as shown in Figure 

5. The value loss obtained with the DBSH approach is found to be $419,043, while the value loss 

obtained with the CPTAP approach is found to be $421,478. The total value loss is $839,345 and 

$841,780 obtained when the DBSH and the CPTAP are used respectively. DBSH shows an 

improvement in the value loss for the upper section of the river with a gap of 0.581% and an 

improvement in the total value loss with a gap of 0.29%. In addition to the case study, we use 

our DBSH to solve thirty-five test instances. Tong and Nachtmann (2017) classified these instances 

as large size because they consist of fifteen terminals and fifty disrupted barges. We focus on solving 

large size instances because these are the instances that best represent real world-sized 

transportation system decisions. Moreover, we want to be able to decrease the amount of 

computational time that is consumed by the CPTAP to solve these large size instances. 



 

Figure 5. DBSH and CPTAP comparison results. Updated from Tong and Nachtmann (2017) 

 

We present our results in Table 6, which shows the instance number, value loss obtained with CPTAP 

and DBSH respectively, the gap between these values, CPU time used with each approach, and 

the gap between the CPU required by CPTAP and DBSH. 

On average, the value loss obtained with the CPTAP is $812,403, while the DBSH results in 

a value loss of $815,553, which represents a gap of 0.4%. The maximum gap for the cases when 

CPTAP outperforms the DBSH is 6.42%. For the computation time criteria, the DBSH outperforms 

the CPTAP for all instances. The CPTAP CPU time is 201.2 seconds on average, while the DBSH CPU 

time is 8.3 seconds on average. The gap between the CPTAP CPU time and the DBSH CPU time is -

92.3% on average. The maximum gap for the cases when DBSH outperforms the CPTAP 

computational time is 99.8%. The reason the DBSH outperforms CPTAP in terms of computational 

time is that the CPTAP model requires the calculation of the actual contribution time of every 

barge for all possible combinations of terminal assignments, which is a non-linear calculation and 

computationally expensive. 

In this paper, we introduced the DBSH approach that solves multiple linear models, updating 

the remaining capacity after running the previous iterations (assignment model). The possible 

assignments for each iteration in the DBSH approach are made following a priority index, 



considering the barges carrying the cargo with the priority index associated with the current 

iteration. The scheduling component is handled outside the assignment linear models, and the 

barges are scheduled at each terminal based on the linear scheduling model. 

Table 6. Results for thirty-five large size instances

 

The CPTAP modeling effort is therefore more computationally complex than that of the proposed 

DBSH, and the implementation of the DBSH is more user friendly than the CPTAP approach. The 

capabilities of off-the-shelf solvers are better suited to solve linear models over non-linear models, 

which typically require development of specialized and specific solution procedures such as the GA 



developed by (Tong & Nachtmann, 2017). Considering the results and ease of implementation, the 

use of the less complex DBSH approach is recommended. 

  



4 Impacts/Benefits of Implementation 

In this section, we highlight the benefits of this study. Transportation engineers and planners 

require tools such as the DBSH to support their decisions during a disruption response in order to 

efficiently mitigate the negative impacts. Some disruptions may cause drastic losses not only in 

terms of either time or money losses but in terms of lives and environmental losses. The closure 

of the main lock chamber of the Greenup Lock and Dam on the Ohio River, due to emergency repairs 

in 2003, lasted 52 days and caused an estimated total economic loss of $41.9 million (The Planning 

Center of Expertise for Inland Navigation, 2005b). The McAlpine Lock and Dam on the Ohio River 

closure due to repair extensive cracking in its miter gate lasted ten days and the total economic 

loss was estimated to be $9 million (The Planning Center of Expertise for Inland Navigation, 2005a). 

In April 2017, the navigation on a section of the Mississippi River was closed after nine grain barges 

broke free from a tow and struck Lock and Dam 22. On the same month, a four-mile section of the 

lower Ohio River was closed after a tow boat pushing twenty barges struck Lock and Dam 52. One 

of the barges was carrying 47,000 gallons of diesel, and the closure caused a queue of sixteen 

vessels. The waterway closures disrupted the navigation of grain barges from a large portion of 

the Midwest farm belt to Gulf Coast export terminals, which handle approximately sixty percent 

of U.S. corn, soybean and wheat export shipments. As a result, the corn costs increased by an 

estimated two to three cents per bushel (Plume, 2017).  

Other recent real world examples of inland waterway disruptions and their associated 

consequences are presented in Table 1. In these situations, it is necessary for transportation 

engineers and planners to make quick, efficient, and effective decisions on how best to redirect 

disrupted cargo in order to reduce negative impacts. Engineering managers in the maritime 

transportation field specifically need decision support tools to allocate and schedule disrupted 

barges to inland terminals available after the disruption. These decisions should consider the 

features of the cargo carried by the barges as hazardous cargo must be handled with a higher 

priority than non-hazardous and cargo types vary in value and perishability. In this paper, we 

contribute a decision support tool that engineering managers can use to support their inland 

waterway disruption response efforts. 

 



5 Recommendations and Conclusions 

This paper studies the cargo prioritization and terminal allocation problem for inland waterway 

navigation under disruptive response. This problem integrates two decisions, the assignment of 

the disrupted barges to terminals where the cargo is offloaded and the scheduling and order in 

which the barges are served by the assigned terminals. To solve this problem, we propose a 

decomposition based sequential heuristic (DBSH) that consists of three decision components; a cargo 

prioritization model, an assignment model, and a scheduling model.   

We assume that each barge strictly carries one type of cargo. Therefore, the cargo 

prioritization also determines the priority index of each barge. These priority indexes are obtained 

from an AHP approach. The second component, assignment of barges to terminals, is formulated as 

an ILP model that minimizes the total cargo value loss associated to the assignment decisions. The 

third component, scheduling of barges assigned to a terminal, is formulated as an MILP model that 

minimizes total value loss associated with the scheduling decisions. The allocation of barges to 

terminals is developed by using the ILP in a sequential manner. The ILP is executed for each set of 

barges carrying cargo with the same priority index. The barges carrying cargo with highest priority 

are considered in the first run of the model. The capacity is updated, and a second run of the model 

is executed for the barges carrying cargo with the next highest priority index. This process is 

repeated until either no capacity is available or all barges have been assigned. The third component 

of the decision, scheduling the barges offloading at each terminal, is addressed using a MILP 

model. 

We implement our DBSH to solve thirty-five instances proposed by Tong and Nachtmann 

(2017) and compare our results with their CPTAP results obtained with a non-linear model and GA 

approach. We find that the results of our DBSH do not differ practically from the results obtained 

with the CPTAP approach in terms of the total value loss. However, the computational time is 

drastically improved with the DBSH, and the proposed DBSH is easier to implement as compared to 

the CPTAP approach. Our solution approach consists of linear models, while the model proposed by 

Tong and Nachtmann (2017) is non-linear. Considering our findings, we conclude the DBSH may be 

used in order to obtain similar results from the CPTAP approach while less complexity in the 

implementation is required. With this contribution, we have extended the AHP approach that 



Delgado-Hidalgo et al. (2015) and Tong and Nachtmann (2013) developed to assign a priority index 

to each cargo carried by the barges. We integrate a modified version of their AHP approach with 

mathematical models to allocate and schedule prioritized barges to terminals as part of 

disruption response in inland waterways. 

Future work includes integrating the assignment and scheduling model in a single linear model as 

this would allow us to develop experimental comparison between the hierarchical and the 

integrated model in terms of the total cargo value loss and considering additional characteristics 

into the model to study more realistic problems such as stochastic handling or transport time. 
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