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Abstract 

To mitigate inland waterway disruption impacts, we developed the cargo prioritization and 

terminal allocation problem (CPTAP) to minimize the total value loss of disrupted barge cargoes.  

CPTAP is formulated as a mathematical program, and problems of realistic size can be efficiently 

and effectively solved with a heuristic approach. The final solution identifies an accessible 

alternative terminal for each disrupted barge and the prioritized offload turn that each barge 

takes at its assigned terminal.  Implementation of CPTAP results in reduced cargo value loss and 

response time when compared to a naïve minimize distance approach.  This project extends our 

earlier work through CPTAP model enhancement by incorporating uncertainty impacts into the 

model and experimentation.     

 

1. Project Description 

Comprised of approximately 12,000 miles of navigable waterways, the U.S. inland waterway 

system is a commercially and strategically important transportation mode. It is especially critical 

for certain commodities (e.g., agricultural and coal & petroleum) and geographical regions. 

Unexpected disruptions to the system due to natural disasters, vessel accidents, or terrorist 

attacks can cause non-navigable water levels or destroy major navigation infrastructures (e.g. 

bridges, locks and dams) resulting in closures of the inland waterway and consequent economic 

and societal impacts. We developed an optimization approach to the cargo prioritization and 

terminal allocation problem (CPTAP) to provide decision support for disruption response 

stakeholders in order to minimize the total value loss of cargo disruptions on the inland 

waterways. The details of the CPTAP formulation as well as a Genetic Algorithm heuristic to solve 

the model can be found in Tong and Nachtmann (2017). Uncertain features such as barge 

transportation speed on the river and expected cargo arrival dates were not included in initial 

formulation of CPTAP. In this project, we develop and employ a more realistic CPTAP model using 

Monte Carlo simulation which allows us to more realistically model inland waterway 

transportation impacts after disruption. The developed approach enhances current CPTAP 

decision support and improves pre-event planning by assessing the resiliency of the inland 
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waterway transportation system to handle potentially disrupted cargo under uncertain 

conditions. 

 

2. Literature Review 

We examined two sets of relevant literature, both of which provide insights in exploring 

approaches to incorporate uncertain factors into CPTAP. Berth allocation problem (BAP) has 

similarity with the CPTAP, and we conducted a literature review on the deterministic BAP 

problem in our previous research (the majority of BAP literature solves deterministic BAP). The 

first set of literature we investigated in this research is the stochastic BAP (i.e., BAP with uncertain 

factors). For the second set of literature, we investigated the literature that focuses on port 

related simulation models. The first set of literature lays out the potential approaches of handling 

uncertainties for the CPTAP, and the latter set of literature emphasizes the approach we selected 

(Monte Carlo simulation) under an extensive context (port related).  

 

2.1 BAP with Uncertainty 

Xu et al. (2011) studied uncertain arrival time and handling time in the BAP. A special buffer time 

between the vessels assigned to the same berth was adopted as the decision variable to 

represent the vessel delays and handling time. These authors proposed a robust berth allocation 

problem (RBAP) model to obtain a balance between the service level and the baseline berth plan 

robustness. A hybrid heuristic algorithm that combines simulated annealing and branch-and-

bound algorithm was developed to tackle the RBAP. Numerical experiments were conducted to 

show that the RBAP was solved effectively by the proposed heuristic. Zhen (2015) introduced two 

models to address the random operation time of the vessels in a tactical berth allocation problem 

- a stochastic programming model formulation with a parameter to represent deviation between 

the estimated and actual number of containers handled at the port, and a robust model 

formulation that can limit the worst-case outcome. Meta-heuristic was proposed to solve large 

size problems within a reasonable CPU time. Uncertain arrival time is the major concern in 

Budipriyanto et al.'s 2015 research article. These authors developed a conceptual model that 

encourages the collaboration between different terminal operators in sharing assets and jointly 
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planning the berthing schedules. The objective of their conceptual model is to minimize the 

idleness of terminal facilities and resources and to improve the overall resource utilization at 

multiple terminals. Similar to Xu et al (2011), Liu et al. (2016) also took arrival time and operation 

time into consideration as the uncertain parameters in the BAP. These authors developed a 

mixed-integer and two-stage stochastic formulation, and the proactive handling way was used 

for the uncertainty. An adaptive differential evolution algorithm (ADE) was employed to solve 

the proposed problem and proved to be effective in solving BAP under uncertainty. Xi et al. (2017) 

again focused on the arrival times and operation times of the calling vessels. A discrete number 

of scenarios was used to represent the uncertainty. A bi-objective BAP with objective functions 

on economic performance and customer satisfaction was developed, and an adaptive grey wolf 

optimizer algorithm was adopted to solve the BAP. Based on their previous work in 2015, 

Budipriyanto et al. (2017) built a simulation model to investigate how the non-collaborative-

response and collaborative-response between berth terminals affect port performance under 

uncertainty. Not surprisingly, the authors found that the collaborative approach leads to a 

shorter waiting time, operation time, and total ship turnaround time.  

 

2.2 Simulation in Ports and Container Terminals 

There is an extensive amount of literature on simulation models applied to port and container 

terminal operations. We selected five research papers that employ a simulation-optimization 

framework which relates to our research problem for review. Zeng and Yang (2008)’s research 

examined approaches to schedule the loading/unloading of containers at the container 

terminals. They first used optimization to find the solutions of the container sequence and then 

employed simulation (using Arena software) to evaluate the solutions generated by the 

optimization model. Numerical experiments justified the effectiveness of the integrated 

optimization-simulation method. The quay crane scheduling problem was investigated by Legato 

et al. (2008). They proposed an integer programming formulation for deterministic discharge-

loading times and developed a simulation-based optimization method for uncertain discharge-

loading times (exponential or hyper-exponentially distributed). Sacone and Siri (2009) developed 

a scheme of simulation-optimization integration for solving operational planning problems in 
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seaport container terminals. Arena software was used to represent the dynamic behavior of the 

terminal, and the optimization model was used to obtain certain system parameters which were 

adopted as inputs for the simulation model. Legato et al. (2010) further investigated the 

discharge/loading process using a simulation-based optimization model. A simulated annealing 

procedure was developed to search for the crane schedules while a discrete-event simulation 

model was used to estimate parameters for the heuristic algorithm. The uncertainty due to the 

port congestion and an unfixed port operation time was considered by their simulation 

optimization model. Based on their prior research, Legato et al. (2014) applied the simulation 

optimization concept to the berth allocation problem (BAP), which was solved by a programming 

model at a tactical level and a simulation model at the operational level. Both beam search and 

simulated annealing were employed in the optimization framework, and Monte Carlo simulation 

was adopted to capture all sources of randomness at the operational level.  

 

3. Methodological Approach 

3.1 Discussion on Water Transport Time Uncertainty  

In the CPTAP model, water transport time functions as one of the important parameters in the 

objective function and the value loss constraint. In our initial work, we assumed that water 

transport time is a fixed parameter once the barges are assigned to their terminals by using an 

average water transport speed of five miles per hour (mph), and therefore, all barges traveling 

on the inland waterway from their current location when the waterway is disrupted to the 

offloading terminal adopt the five mph speed assumption in CPTAP. The speed value was 

estimated by observing the movement of ninety-six barge tows on the studied river section – 

from Lock/Dam 14 to Lock/Dam 19 on the Mississippi River in September 2012. The simplification 

of the barge speed was necessary to formulate a deterministic nonlinear integer programming 

model and evaluate its effectiveness. However, we recognize that under real world conditions, 

barge speed is an uncertain parameter affected by a variety of factors. For example, barges may 

travel slower if it needs to pass through one or multiple locks on its way to the assigned terminal 

due to the waiting time and the processing time at the lock. Therefore, in this research, we are 

interested in expanding our CPTAP model of normal and disrupted inland waterway 



7 
 

transportation with the ability to handle uncertain barge traveling speed. Our research team 

explored the U.S. Army Corps of Engineers Navigation Data Center and ran the lock queue report 

of the studied river section every fifteen minutes over a period of a few days. By stacking locks 

within the same river system and following the barge tow’s movement across multiple locks, we 

were able to develop the distributions of the barge speed of different moving directions and 

under various waterway scenarios, as shown in Figure 1.  

 

Figure 1. Barge Speed for Travelling Up/Down the Studied River Section 

The three scenarios considered are as follows: 

 Based on Travel Only: The disrupted barge tow will not move across any Lock/Dam on its 

way to the assigned terminal. 

 Based on Travel and Lockage: The disrupted barge tow will move across at least one 

Lock/Dam on its way to the assigned terminal but there is no abnormal delay at the 

Lock/Dam. 

 Based on Travel, Lockage and Delay: The disrupted barge tow will move across at least 

one Lock/Dam on its way to the assigned terminal and there is the abnormal delay at the 

Lock/Dam. 

From Figure 1, we observe that the barge tow moves faster when going upriver in all three 

scenarios, and it is not difficult to anticipate a slower barge speed when the barge travels across 

the Lock/Dam with delays.  

 

  

3.755 3.683

4.113 3.959

5.666
5.063

0

1

2

3

4

5

6

Upstream Downstream

M
P

H

Barge Speed

Based on Travel Only

Based on Travel and
Lockage

Based on Delay, Travel
and Lockage



8 
 

3.2 Discussion on Monte Carlo Simulation 

To model the uncertain water transport speed in the CPTAP, simulation is an appropriate 

approach that meets our model requirements. There are over fifty different simulation 

languages, software, and simulators that have been used in port and terminal simulation 

modeling (Dragovic et al, 2016). We selected the Monte Carlo method, which is a simple but 

robust simulation concept that can be coded into our existing CPTAP Genetic Algorithm (GA) C++ 

programming code. The pseudocode of the GA with the Monte Carlo procedure is presented in 

Figure 2. Given the distributions of the speed values, we are able to generate different speeds 

under different scenarios for barges traveling on the inland waterway. Water transport time is 

developed based on the generated speed. We run the CPTAP model for each generated speed to 

get its Genetic Algorithm solutions and then summarize the overall Genetic Algorithm solutions.  

 

Pseudocode CPTAP GA Approach with Monte Carlo Simulation Procedure  

1: READ data of general information of terminal, barge and cargo 

2: SET i to 0 
FOR i is less than the number of the random scenarios that to be generated 

3:      WHILE the generated speed not feasible 

4:           Generate a new speed value 

5:      ENDWHILE 

6: ENDFOR 

7: SET mc to 0 
For mc is less than the number of the random scenarios that to be generated 
     Revise water transport time based on the speed  
     SET m to 1 

8:      WHILE m < Iteration number 

9:           Conduct Tournament selection to select two parents 

10:           Conduct Crossover to produce two children 

11:           Conduct Mutation on the two children  

12:           Conduct Repair to produce two structurally feasible children 

13:           CALL SolutionValue RETURNING objective function values of two children 

14:           IF the child does not share the same objective function value with chromosomes in population 

15:                IF the child performs better than the worst chromosome in the population    

16:                     Include the child into the population 

17:                ENDIF 

18:           ENDIF 

19:           INCREMENT m 

20:      ENDWHILE 
ENDFOR 21: 

Figure 2. GA Approach with Monte Carlo Simulation Procedure Pseudocode 
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4. Results/Findings 

We evaluated the optimization-simulation CPTAP model using the previously generated data 

instances used for testing the CPTAP GA-based heuristic. We provide a brief explanation on 

instance generation here and detailed information can be found in Tong and Nachtmann (2017). 

The instances are generated from the data collected on the 154-mile river section on the 

Mississippi River from Lock/Dam 14 to 19.  

 

Barge location, cargo offload time, and land transport time are also modeled as uncertain 

parameters and generated according to Uniform distributions. Barge volume and terminal 

capacity are set as 1000 tons per barge and 5000 tons per commodity type respectively. The 

cargo value on each barge is calculated by multiplying the barge volume and its market unit price. 

Barge draft is estimated based on its probability density function developed from the draft data 

of vessel trips. For the value decreasing rate (VDR) parameter, hazardous cargo (all petroleum 

and 50% of the chemicals) is given the highest VDR (0.6 per ton per hour), nonhazardous 

chemicals and perishable products receive the second highest VDR (0.4 per ton per hour), crude 

materials and primary manufactured goods take the third place (0.3 per ton per hour), and the 

lowest VDR goes to the coal (0.1 per ton per hour). We evaluated the optimization-simulation 

CPTAP model using three types of instances – small, medium and large, which are defined based 

on the number of terminals and barges involved in the instances: small size instances include five 

terminals and nine barges, medium size instances have ten terminals and thirty barges, and large 

size instances include fifteen terminals and fifty barges. 

 

In terms of the data needed for the simulation procedure, we generate four hundred simulation 

iterations that can limit the CPU time within a reasonable limit for small and medium size 

instances. For large size instance, the simulation results cannot be obtained in forty-eight hours. 

Therefore, we use an alternative approach to generate and combine the results. Table 1 

summarizes the normal distribution parameters for the barge speed used in this research. The 

related discussion was provided in Section 3.1. 
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Table 1. Normal Distribution Parameters for Barge Speed 

 

4.1 Small Size Instance Results 

Figure 3 displays the optimization-simulation CPTAP results for a small size instance with the 

different river scenarios. We run the C++ programming code for CPTAP GA together with the 

Monte Carlo simulation for barges travelling up and down the river under three scenarios that 

affect the barge speed, resulting in six summary reports that are processed by Minitab. Based on 

these six reports, we observe that none of the simulation results follows a normal distribution 

and they are all positive (right) skewed, indicating majority of the simulation results center 

around the minimum (or best) optimization value with a few of outliers that represent very high 

total value loss. Looking at the 3rd Quartile values for all six reports, 75% of the simulation results 

are less than or equal to 3% to 4% increase of the minimum value loss, which shows that a 

significant amount of the four hundred simulation iterations produce results that are very close 

to the minimum total value loss.  
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Figure 3. Small Size Instance Optimization-simulation Results 

In addition to the general pattern for all six summary reports, we also observe some differences 

across the reports. Barges travelling downstream have a higher mean for their simulation results 

(185166, 189975, and 188194 respectively) compared to the ones going upstream (178506, 

184136, and 187507 respectively). Other statistics such as “Minimum”, “1st Quartile”, “Median” 

and “3rd Quartile” all exhibit similar trends between upstream and downstream movements. It 

indicates that the downstream barge owners will suffer a comparatively higher value loss 

compared to the upstream barges when the waterway is disrupted. Table 2 displays the best 

simulation results for small size instance. The best solution that leads to the minimum simulation 

result is the same for all scenarios (it is the optimal solution). The CPU time is consistently 

between 484 and 488 seconds. 
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Table 2. Small Size Instance Simulation Results 

Scenario  Minimum Simulation 
Result ($) 

Best Solution  CPU Time (s) 

Up (Travel) 173797.970 Terminal 1: 1 9 4  
Terminal 2: 3 8 6  
Terminal 3: 2 5  
Terminal 4: 7 

484.366 

Up (Travel & L/D) 173982.677 Terminal 1: 1 9 4  
Terminal 2: 3 8 6  
Terminal 3: 2 5  
Terminal 4: 7 

484.668 

Up (Travel & L/D & Delay) 173986.902 Terminal 1: 1 9 4  
Terminal 2: 3 8 6  
Terminal 3: 2 5  
Terminal 4: 7 

485.889 

Down (Travel) 174082.520 Terminal 1: 1 9 4  
Terminal 2: 3 8 6  
Terminal 3: 2 5  
Terminal 4: 7 

485.880 

Down (Travel & L/D) 174242.366 Terminal 1: 1 9 4  
Terminal 2: 3 8 6  
Terminal 3: 2 5  
Terminal 4: 7 

488.058 

Down (Travel & L/D & Delay) 174279.029 Terminal 1: 1 9 4  
Terminal 2: 3 8 6  
Terminal 3: 2 5  
Terminal 4: 7 

485.901 

 

4.2 Medium Size Instance Results  

Figure 4 displays the optimization-simulation CPTAP results for a medium size instance with the 

different river scenarios. Based on the six reports for the medium size instance, again we observe 

that none of the simulation results follow a normal distribution and they are all positive (right) 

skewed, indicating majority of the simulation results center around the minimum (or best) 

optimization value with a few of outliers that represent very high total value loss. Looking at the 

3rd Quartile values for all six reports, 75% of the simulation results are less than or equal to 8% to 

11% increase of the minimum value loss, which shows that a significant amount of the four 

hundred simulation iterations produce results that are close to the smallest total value loss. 

However, due to the bigger search space of the medium size instance, it becomes more difficult 

to reach the minimum value loss. Similar to small size instance, a higher mean of the value loss is 

observed for barges moving downwards compared to moving upwards.  
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Figure 4. Medium Size Instance Optimization-simulation Results 
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Table 3 displays the best simulation results for the medium size instance. There are some 

similarities in the solution structures for all six scenarios, such as barges #4, #20, and # 22 all 

assigned to Terminal 1. However, no solutions have the exact same structures as shown in small 

size instance. Based on our previous research, small size instances usually obtained the optimal 

solutions in the CPTAP GA, which is not the case for medium size instances. The maximum CPU 

time is no more than thirty-seven minutes, which is a reasonable amount of time to wait for an 

optimization-simulation solution on cargo prioritization and terminal allocation when the 

waterway is disrupted.  

 

Table 3. Medium Size Instance Simulation Results 

Scenario  Minimum Simulation 
Result ($) 

Best Solution  CPU Time (s) 

Up (Travel) 471122.675 Terminal 1: 20 4 9 22  
Terminal 2: 12 19 8 11  
Terminal 3: 28 18 10  
Terminal 4: 24 1 29  
Terminal 5: 2 6 26  
Terminal 6: 21 27 25  
Terminal 7: 3 17 5 15 7  
Terminal 8: 30 13 14  
Terminal 9: 16 23 

1081.997 

Up (Travel & L/D) 474612.872 Terminal 1: 20 4 9 22  
Terminal 2: 19 8 11  
Terminal 3: 28 18  
Terminal 4: 24 17 1 23  
Terminal 5: 2 6 26  
Terminal 6: 27 21 25 29  
Terminal 7: 3 5 15 7  
Terminal 8: 12 30 13 14  
Terminal 9: 16 10 

1119.292 

Up (Travel & L/D & Delay) 475391.381 Terminal 1: 20 4 22  
Terminal 2: 12 19 8 11  
Terminal 3: 28 18  
Terminal 4: 24 17 1  
Terminal 5: 2 6 26  
Terminal 6: 27 21 25 29  
Terminal 7: 3 5 7 15 14  
Terminal 8: 9 30 13  
Terminal 9: 16 10 23 

1159.701 

Down (Travel) 469667.272 Terminal 1: 20 4 9 22  
Terminal 2: 12 19 8 11  
Terminal 3: 28 18  
Terminal 4: 24 17 1  
Terminal 5: 2 6 26  
Terminal 6: 27 21 25 29  
Terminal 7: 3 5 7 15  
Terminal 8: 30 13 14  
Terminal 9: 16 10 23 

2197.260 
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Down (Travel & L/D) 477769.664 Terminal 1: 20 4 9 22  
Terminal 2: 12 19 8 11  
Terminal 3: 28 18  
Terminal 4: 24 17 1 23  
Terminal 5: 2 6 26  
Terminal 6: 27 21 25 29  
Terminal 7: 3 5 16 15 7  
Terminal 8: 30 13 14  
Terminal 9: 10 

1450.289 

Down (Travel & L/D & Delay) 479883.850 Terminal 1: 20 4 9 22  
Terminal 2: 12 19 8 11  
Terminal 3: 1 28 18 10  
Terminal 4: 24 6 17 29  
Terminal 5: 2 26  
Terminal 6: 27 21 25  
Terminal 7: 3 5 7 15  
Terminal 8: 30 13 14  
Terminal 9: 16 23 

1082.621 

 

4.3 Large Size Instance Results  

The integrated optimization-simulation CPTAP programming code cannot reach a solution for a 

large size problem instance after running for forty-eight hours. Therefore, an alternative 

approach is employed where we ran four 100 simulation iterations separately and combine the 

results together to obtain the four hundred simulation iteration results. Minitab is again used to 

analyze the combined four hundred smallest value losses and identify the minimum one with a 

value loss of $713, 395. According to Figure 5, the distribution of the results are more spread out 

compared to small and medium size instance simulation results, likely due to the larger search 

space of the bigger problem size. The decreasing kurtosis value from small to large size instance 

shows the same conclusion where the flatter peak shape of the large size instance has less 

simulation results that can reach the obtained minimum value loss. More outliers are observed, 

and 75% of the results produce the value loss within a 15.2% increase from the minimum value 

loss. 
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Figure 5. Large Size Instance Optimization-simulation Results 

 

5. Impacts/Benefits of Implementation 

In addition to providing guidance on cargo prioritization under uncertainty, this project can be 

used to identify infrastructure that exhibits low resiliency in terms of modal capacity to potential 

attacks or natural disasters against inland waterway transportation systems. Inland waterways 

transport over 600 million tons of cargo each year. A catastrophic event on the rivers could 

disrupt commerce for an extended period of time. It is important to pre-plan for this type of 

event, enable coordination between industry and governmental groups, and provide knowledge 

of where the system lacks resilience to recover from such an event. Inland waterways are a 

national asset for many reasons, including the $70 billion dollars of cargo that are transported 

annually, the impact of reducing congestion on already over-crowded highways and railways, and 

the tens of thousands of jobs associated with this transportation mode. 

 

6. Recommendations and Conclusions  

Expanding our previous research on deterministic inland waterway disruption response, we 

developed a Monte Carlo-based simulation optimization approach to handle uncertain 

parameters in the CPTAP model. Different scenarios of waterway transportation were 

1st Quartile 752052
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159080 182791

A-Squared 59.37

P-Value <0.005

Mean 826955
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Variance 28936761969
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N 400
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considered, and the barge speeds were generated from real data to represent the random 

scenarios. We applied the optimization-simulation CPTAP model to small, medium and large size 

problem instances. Minimum value losses and corresponding solution structures can be obtained 

within a reasonable CPU time for small and medium size instances in one programming run. An 

alternative approach with multiple programming runs is adopted for large size instance to obtain 

the minimum value loss and its solution structure. We observe that distributions of the simulation 

results are getting more and more spread out but the majority of the results are close to the 

minimum value loss for all instances with different sizes. 
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